270 likes | 392 Views
Two Example Parallel Programs using MPI. UNC-Wilmington, C. Ferner, 2008 Nov 4, 2008. Matrix Multiplication. Matrices are multiplied together using the dot product of each row of the first matrix with each column of the second matrix. B. A. C. =. *. Matrix Multiplication.
E N D
Two Example Parallel Programs using MPI UNC-Wilmington, C. Ferner, 2008 Nov 4, 2008
Matrix Multiplication • Matrices are multiplied together using the dot product of each row of the first matrix with each column of the second matrix B A C = *
Matrix Multiplication • For each value at row i and column j, the result is the dot product of the ith row from A and the jth column from B:
Matrix Multiplication • For each row i from [0..N-1] and each column j from [0..N-1] the value for position [i][j] of the resulting matrix is computed: for (i = 0; i < N; i++) for (j = 0; j < N; j++) { C[i][j] = 0; for (k = 0; k < N; j++) C[i][j] += A[i][k] * B[k][j]; }
Matrix Multiplication • This can be implemented on multiple processors where each processor is responsible for computing a different set of rows in the final matrix • As long as each processor has the parts of the A and B matrix, they can do this without communication C
Matrix Multiplication • If there are N rows and P processors, then each processor is responsible for N/P rows. • Each processor is responsible for the rows from my_rank * N/P up to (but excluding) (my_rank + 1) * N/P 0 * N/P { my_rank = 0 1 * N/P { my_rank = 1 2 * N/P { my_rank = 2 3 * N/P
Matrix Multiplication • This is coded as: for (i = 0 + my_rank * N/P; i < 0 + (my_rank + 1) * N/P; i++) for (j = 0; j < N; j++) { C[i][j] = 0; for (k = 0; k < N; j++) C[i][j] += A[i][k] * B[k][j]; }
Matrix Multiplication • One Problem: What if N/P is not an integer? • The last processor has fewer than N/P rows for which it is responsible. • The code on the previous slide will cause the last processors (or last couple of processors) to compute beyond the last row of the matrix
Matrix Multiplication • This is dealt with as follows: blksz = (int) ceil((float) N / P); for (i = 0 + my_rank * blksz; i < min(N, 0 + (my_rank + 1) * blksz); i++) for (j = 0; j < N; j++) { C[i][j] = 0; for (k = 0; k < N; j++) C[i][j] += A[i][k] * B[k][j]; }
Matrix Multiplication • For example suppose N=13 and P=4. Then: blksz = ceiling(13/4) = 4 Processor 0 : i = [0*4..1*4) = [0..4) Processor 1 : i = [1*4..2*4) = [4..8) Processor 2 : i = [2*4..3*4) = [8..12) Processor 3 : i = [3*4..min(13,4*4))=[12..13)
Numerical Integration • Suppose we have a non-negative, continuous function f and we want to compute the integral of f from a to b: y x a b
Numerical Integration • We can approximate the integral by dividing the area into trapezoids and summing the area of the trapezoids y x a b
Numerical Integration • If we use equal width partitions, then each partition is h=(a+b)/n y x a b
Numerical Integration • The area of the ith trapezoid is: y x h a b
Numerical Integration • The area for all trapezoids is:
Numerical Integration Sequential program double f(double x); main (int argc, char *argv[]) { int N, i; double a, b, h, x, integral; char *usage = "Usage: %s a b N \n"; double elapsed_time; struct timeval tv1, tv2;
Numerical Integration Sequential program if (argc < 4) { fprintf (stderr, usage, argv[0]); return -1; } a = atof(argv[1]); b = atof(argv[2]); N = atoi(argv[3]);
Numerical Integration Sequential program gettimeofday(&tv1, NULL); h = (b - a) / N; integral = (f(a) + f(b))/2.0; x = a + h; for (i = 1; i < N; i++) { integral += f(x); x += h; } integral = integral*h; gettimeofday(&tv2, NULL);
Numerical Integration Sequential program elapsed_time = (tv2.tv_sec - tv1.tv_sec) + ((tv2.tv_usec - tv1.tv_usec) / 1000000.0); printf ("elapsed_time=\t%lf seconds\n", elapsed_time); printf ("With N = %d trapezoids, \n", N); printf ("estimate of integral from %f to %f = %f\n", N, a, b, integral); }
Numerical Integration Sequential program double f(double x) { return 6*x*x - 5*x; }
Numerical Integration Sequential program $ ./integ 1 3 10000 a = 1.000000, b = 3.000000, N = 10000 elapsed_time= 0.000567 seconds With N = 10000 trapezoids, estimate of integral from 1.000000 to 3.000000 = 32.000000
Numerical Integration Parallel program • Each processor will be responsible for computing the area of a subset of trapezoids y { { { x a b P2 P0 P1
Numerical Integration Parallel program int main(int argc, char *argv[]) { int N, P, mypid, blksz, i; double a, b, h, x, integral, localA, localB, total; char *usage = "Usage: %s a b N \n"; double elapsed_time; struct timeval tv1, tv2; int abort = 0; MPI_Init(&argc, &argv); MPI_Comm_size (MPI_COMM_WORLD, &P); MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
Numerical Integration Parallel program if (my_rank == 0) { a = atof(argv[1]); b = atof(argv[2]); N = atoi(argv[3]); } MPI_Bcast (&a, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast (&b, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); MPI_Bcast (&N, 1, MPI_INT, 0, MPI_COMM_WORLD); h = (b - a) / N;
Numerical Integration Parallel program blksz = (int) ceil ( ((float) N) / P); localA = a + mypid * blksz * h; localB = min(b, a + (mypid + 1) * blksz * h); integral = (f(localA) + f(localB))/2.0; x = localA + h; for (i = 1; i < blksz && x <= localB; i++) { integral += f(x); x += h; } integral = integral*h;
Numerical Integration Parallel program MPI_Reduce (&integral, &total, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (mypid == 0) printf ("integral = %f\n", total); } float f(float x) { return 6*x*x - 5*x; }
Numerical Integration Parallel program $ mpicc mpiInteg.c -o mpiInteg -lm $ mpirun -nolocal -np 4 mpiInteg 1 3 10000 elapsed_time= 0.001416 seconds integral = 32.000000