230 likes | 339 Views
Treatment of Types in an Implementation of λ Prolog Organized around Higher-Order Pattern Unification. Xiaochu Qi Department of Computer Science and Engineering University of Minnesota. Types in Logic Programming Languages. descriptive notion: typed Prolog parametric polymorphism
E N D
Treatment of Types in an Implementation of λProlog Organized around Higher-Order Pattern Unification Xiaochu Qi Department of Computer Science and Engineering University of Minnesota
Types in Logic Programming Languages • descriptive notion: • typed Prolog • parametric polymorphism type nil (list A). type :: A -> (list A) -> (list A). type append (list A) -> (list A) -> (list A) -> o.
Types in Logic Programming Languages • prescriptive notion: • λProlog • mixed usage of parametric and ad hoc polymorphism type print_int int -> o. type print_str string -> o. type print A -> o. print X :- print_int X. print X :- print_str X. print X.
The Nature of Polymorphism in λProlog • a polymorphic version of the simply typed λ-calculus • atomic types: including type variables • the intuitive meaning of a term t :σ {t :σ’|σ’ is a closed instance of σ }
The Roles of Types in λProlog • a strongly typed language • type declarations for constants • inferring types for all subterms • prevent run-time failures • well-typedness: compile time type-checking • participate in unification
universal variable existential variable constant A Prefix of Mixed Quantifiers ?- (F)(append (c::nil) nil (F c)). ∀c ∀:: ∀nil ∀append F ?- (F)∀c(append (c::nil) nil (F c)). ∀:: ∀nil ∀append F ∀c
Types of Constants and Variables • The occurrences of a constant can have different types. • The occurrences of a universal or existential variable must always have identical types. type nil (list A). type :: A -> (list A) -> (list A). (1 :: nil) (“a” :: nil) (1:int :::int->(list int)->(list int) nil:(list int)) (“a”:string :::string->(list string)->(list string) nil:(list string))
Higher-Order Unification • determine the identity of constants • decide the structures of unifiers • Types are associated with every variable and constant.
Higher-Order Pattern Unification • determine the identity of constants • a universal or existential variable: • always has identical types in different occurrences • can have a polymorphic type, which could be specialized during unification
Typed Higher-Order Pattern Unification • processing terms in a top-down manner • iterative usage of: • term simplification phase: • simply non-existential variable head applications • binding phase • decide the structure of bindings for existential variables • invariant: Terms to be unified always have identical types.
Typed Higher-Order Pattern Unification • term simplification phase: • constant heads: examine (specialize) the types of these constants • others: already have identical types • binding phase: • identical types of the entire terms • identical types of relevant variables • no comparison on constants • No need for type examination
∀g F ∀c X ∀a type g A -> B. τ(c)= A->B τ(a)= C τ(X)= C->A τ(F)= (A->B)->int <(g (c (X a))) , (g (F c))> <(g:B->D (c:A->B (X:C->A a:C)), (g:int->D (F:(A->B)->int c:A->B))> (r-r): {<B, int>} <c:A->int (X:C->A a:C), F:(A->int)->int c:A->int> (r-f): {<F, λc(c (H c))>} ∀g HF ∀c X ∀a <X:C->A a:C, H:(A->int)->A c:A->int> (f-f): {<X, λc(H’ a)>, <F, λc(c (H’ c))>}
∀1 ∀”a” ∀f X Y ∀c type f A -> B -> C. τ(c)= A->B τ(X)= A τ(Y)= B <(f X “a” (c X)) , (f 1 Y (c Y))> <f:A->string->B->C X:A “a”:string (c:A->B X:A), f:int->A->B->C 1:int Y:A (c:A->B Y:A)>
Maintain Types with Constants • only associating types with constants Exp1: ∀g F ∀c X ∀a <(g:B->D (c:A->B (X:C->A a:C)), (g:int->D (F:(A->B)->int c:A->B))> <(g:B->D (c (Xa)), (g:int->D (F c))> Exp2: ∀1 ∀”a” ∀f X Y <f:A->string->B->C X:A “a”:string (c:A->B X:A), f:int->A->B->C 1:int Y:A (c:A->B Y:A)> <f:A->string->B->C X “a” (c X), f:int->A->B->C1 Y (c Y)>
Exp1: <(g:B->D (c (Xa)), (g:int->D (F c))> <(g:[B,D] (c (Xa)), (g:[int,D] (F c))> Maintain instances of type variables • well-typedness with respect to type declarations • compile time type-checking • instances of type variables • run time type-checking (:: (:: X nil) nil) (:::(list A)->(list (list A))->(list (list A)) (:::A->(list A)->(list A)Xnil:(list A)) nil:(list (list A))) (:::[list A] (:::[A] X nil:[A]) nil:[list A])
Type Preservation • Type variables occurring in target types have been checked at a upper level. • Constant function symbols: • type variables not occurring in target types • Non-function constants: no need to maintain types type :: A -> (list A) -> (list A). type nil (list A). (:::[list A](:::[A] X nil:[A]) nil:[list A]) (::(:: X nil) nil) type g (A -> B) -> A. type a int -> B. (:::[int] (g:[int,B] a:[int,B]) nil:[int]) (:: (g [B] a) nil)
Type Processing Effort in Compiled Unification type id (list A) -> (list A) -> o. id nil nil. id (X::L) (X::K) :- id L K. Teyjus: id A (:: A X L) (:: A X K) :- id A L K. Our scheme: id A (:: X L) (:: X K) :- id A L K. ?- id (1::nil) T. Teyjus: ?- id int (:: int 1 nil) T. Our scheme: ?-id int (:: 1 nil) T.
<(:: A X L), (:: int 1 nil)> (read mode) <(:: A X K), T> (write mode) Type Processing in Compiled Unification over<id (X::L) (X::K), id (1::nil) T> <A, int> bind (A, int); <(:: X L), (:: 1 nil)> bind (X, 1); bind (L, nil); bind (T, (:: A S2 K)); bind (A, int); bind (S2, X); <(:: X K), T> bind (T, (:: S2 K));
Type generality • Typed Prolog : type p σ1 -> … -> σn -> o. p t1 … tn :- b1, …, bm. • τ(t1)= σ1, …, τ(tn)= σn • Every sub-term of tiis type preserving. • Only type general and preserving programs are well-typed. • λProlog : • mixed usage of parametric and ad hoc polymorphism
Type generality in λProlog type print A -> o. type print_int int -> o. type print_str string -> o. print X :- print_int X. print X :- print_string X. print X. • type generality and preservation property should hold on every clause head defining a predicate.
Type generality in λProlog type foo A -> o. foo X :- print X. • type variables of the clause head should not be used in body goals.
Conclusion • Type examination is necessary in higher-order pattern unification. • Reduce type association and run-time type examination • constant function symbols • separate static and dynamic information • take advantage of the type preservation property
Future work • prove the correctness of the typed higher-order pattern unification scheme • taking advantage of the type generality property • making usage in implementations