1 / 31

How to Stall a Motor: Information-Based Optimization for Safety Refutation of Hybrid Systems

How to Stall a Motor: Information-Based Optimization for Safety Refutation of Hybrid Systems. Todd W. Neller Knowledge Systems Laboratory Stanford University. Outline. Defining the problem: Will the critical satellite motor stall? Generalizing the problem: Hybrid Systems

wiley
Download Presentation

How to Stall a Motor: Information-Based Optimization for Safety Refutation of Hybrid Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. How to Stall a Motor:Information-Based Optimization for Safety Refutation of Hybrid Systems Todd W. Neller Knowledge Systems Laboratory Stanford University

  2. Outline • Defining the problem: Will the critical satellite motor stall? • Generalizing the problem: Hybrid Systems • Reformulating the problem: Optimizing for failure • Describing the tool we need: Information-Based Optimization • Exciting Conclusion: Why should a power screwdriver be inspiring?

  3. Stepper Motors   a.k.a. “step motors” t 

  4. The Problem • Dan Goldin, head of NASA: “Smaller, Faster, Better, Cheaper”  microsatellites, autonomy, C.O.T.S. • SSDL’s OPAL: Orbiting Picosatellite Automated Launcher • Problem: Will the motor stall while accelerating the picosatellite? • How to find good research problems: specific  general ?

  5. Hybrid Systems • Hybrid = Discrete + Continuous • Example: Bouncing Ball • Fast Continuous Change  Discrete Change • More Interesting Example: Mode Switching Controllers

  6. Safety • Safety property - Something that is always true about a system • Another view: A set of states the system never leaves • Safe/unsafe states, desired/undesired states • Initial Safety property - Safety over an initial duration of time

  7. Verification, Refutation • Verification of safety: Proving that the system can never leave safe states • Verification through simulation? • Refutation of safety: Proving that the system can leave safe states • Proof by counterexample

  8. Stepper Motor Safety Refutation • Given: • Stepper motor simulator and acceleration table • Bounds on stepper motor system parameters and initial state • Set of stall states • Find: • Parameters and initial conditions such that the motor enters a stall state during acceleration

  9. General Problem Statement • Given: • Hybrid system simulator for initial time duration • Bounds on initial conditions (parameters and variable assignments) • Set of unsafe states • Find: • Initial conditions such that the system enters an unsafe state during initial time

  10. Tools for Initial Safety Refutation of Hybrid Systems Nooo! • Generate and Test (There has to be a better way, right?)

  11. Distance from Unsafe States • Make use of simple knowledge of problem domain to provide landscape helpful to search

  12. Refutation through Optimization • Transform refutation problem into an optimization problem with a heuristic (i.e. estimated) measure of relative safety • Apply efficient global optimization

  13. Problem Reformulation • Given: • Hybrid system simulator for initial time t • Possible initial conditions I • Heuristic evaluation function f which takes an initial condition as input and returns a relative safety ranking of the resulting trajectory • Find: • Initial condition x in I, such that f(x) = 0 simulation evaluation initial condition  trajectory  ranking f

  14. Problem: Simulation isn’t Cheap • f(x) is usually assumed cheap to compute. • Most methods store and use very little data. • Solution: Use simulation intelligently. • General principle: Information gained at great cost should be treated with great value. f(7.11)=1.85 f(6.35)=0.92 f(6.27)=0.34 f(9.24)=7.90

  15. Satisficing • General optimization seeks an unknown optimum. • We don’t know our optimum, but we have a goal value we’re seeking to satisfy. • Satisficing (= “satisfying”, economist Herbert Simon) • This knowledge can be leveraged to make our optimization more efficient.

  16. Information-Based Approach Assume: continuous, flat functions more likely

  17. Information-Based Optimization • Information-Based Optimization(Neimark and Strongin, 1966; Strongin and Sergeyev, 1992; Mockus, 1994) • Previous function evaluations shape probability distribution over possible functions. • But we needn’t deal with probabilities. Ranking candidates is enough. • Prefer smooth functions  Prefer candidate which minimizes slope at goal value

  18. Problem: Only Good for One Dimension • In 1-D, candidates are ranked with respect to immediate neighbors. • What are “immediate neighbors” in multi-dimensional space? • Intuition: Closer points have greater relevance.

  19. Solution: Shadowing • Point b shadows point a from point d if: • b is closer to d than a,and • the slope between a and b is greater than the slope between a and d.

  20. Multidimensional Information-Based Optimization • Choose initial point x and evaluate f(x) • Iterate: Pick next point x according to ranking function g(x) and evaluate f(x) • Excellent for efficiently finding zeros when not rare. • Problem: Slow convergence for rare zeros, points clustered near minima

  21. Solution: Multilevel Optimization • Perform a local optimization for each top level function evaluation • Summarize information  tractability • Multilevel Optimization: Generalize to n levels, with each level expediting search for level above

  22. Summary • Initial safety refutation of hybrid system can be reformulated as satisficing optimization given a heuristic measure of relative safety. • Information-based optimization • is suited to such optimization, and • can be extended to multidimensions with shadowing and sampling. • Convergence to rare unsafe trajectories: Multilevel optimization

  23. Using an Optimization Toolbox • You have a set of optimization methods. • You have a set of observations during optimization (e.g. function evals, local minima). Monte Carlo Optimization Information-Based Optimization Monte Carlo w/ Local Optimization Information-Based w/ Local Optimization

  24. Challenge Problem: Method Switching • Given: • a set of iterative optimization procedures • a distribution of optimization problems • a set of optimization features • Learn: • a policy for dynamically switching between procedures which minimizes time to solution for such a distribution

  25. Conclusion • The computer is a power tool for the mind. • Power screwdrivers with Phillips bits don’t work well with slotted screws. • Understand the assumptions of the tools you apply. • You can design new bits suited to new tasks. • One new bit can change the world of computing!

  26. Other Approaches • Few minima: Random Local Optimization • Many minima: Simulated Annealing with Local Optimization (Desai and Patil, 1996) • For higher dimensions, you’re forever searching corners! • Direction Set Methods: Successive 1D minimizations in different directions.

  27. How to Stall a Motor:Information-Based Optimization for Safety Refutation of Hybrid Systems Todd W. Neller Knowledge Systems Laboratory, Stanford University Gettysburg College, January 21, 2000

  28. How to Stall a Motor:Information-Based Optimization for Safety Refutation of Hybrid Systems Todd W. Neller Knowledge Systems Laboratory, Stanford University Colgate University, January 25, 2000

  29. How to Stall a Motor:Information-Based Optimization for Safety Refutation of Hybrid Systems Todd W. Neller Knowledge Systems Laboratory, Stanford University Lafayette College, January 27, 2000

  30. How to Stall a Motor:Information-Based Optimization for Safety Refutation of Hybrid Systems Todd W. Neller Knowledge Systems Laboratory, Stanford University Bowdoin College, January 31, 2000

  31. How to Stall a Motor:Information-Based Optimization for Safety Refutation of Hybrid Systems Todd W. Neller Knowledge Systems Laboratory, Stanford University Williams College, February 11, 2000

More Related