1 / 51

Star-Massive Black Holes Encounters

Star-Massive Black Holes Encounters. J.-P.Luminet Observatoire de Paris (LUTH ). Tidal Disruption Events Esa, Madrid 2012. radiogalaxies. quasars. Supermassive black holes (M > 10 6 M S ) in active galactic nuclei. Seyfert. 2,7  10 6 M S < M < 3,5  10 6 M S ).

Download Presentation

Star-Massive Black Holes Encounters

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Star-Massive Black Holes Encounters J.-P.Luminet Observatoire de Paris (LUTH) Tidal Disruption Events Esa, Madrid 2012

  2. radiogalaxies quasars Supermassive black holes (M > 106 MS) in active galactic nuclei Seyfert

  3. 2,7 106 MS < M < 3,5  106 MS) Massive black holes (M > 106 MS) in quiescent galactic nuclei Sagittarius A*

  4. Intermediate mass black holes (103 < M < 106 MS) in globular clusters M15 4000 MS G1/M31 20 000 MS

  5. The « octopus » model for AGN Luminet (1986)

  6. Accretion radius Collision radius Hills limit 108 MO Ablation radius Tidal radius BH’s gravitational radius Characteristic distances

  7. Newtonian tidal field Tidal field = relative acceleration between elements of matter tidal potential tidal tensor deviation tensor

  8. • For incompressible homogeneous bodies • static field (planet-satellite couple in circular orbit) Edouard Roche Roche limit (1847)

  9. • incompressible bodies in dynamical field (asteroid-black hole encounter in parabolic orbit) Luminet & Carter (1986) Kostic et al. (2009) Cigar-like regime Disk-like regime 0.16 RT ≤ Rp ≤ RT Rp ≤ 0.16 RT

  10. • compressible bodies in dynamical field (star-black hole encounter in parabolic orbit) Luminet et al. 1982-1986 : « affine » model Non-disruptive regime Oscillating Riemann ellipsoid => variable star ?

  11. From equilibrium to stellar disruption Compare : timescale of varying tidal field / internal timescale of the star Far from the tidal radius : Star adjusts its equilibium configuration Close to and inside the tidal radius : Strongly dynamical tidal field => Star cannot respond

  12. Parabolic orbit Crucial parameter : the penetration factor Carter & Luminet (Nature, 1982) Tidal radius Black hole RP RT

  13. Slight penetration (b ~ 1) in the tidal radius Disruption process in the ellipsoidal model (Luminet & Carter, 1986) « cigar-like » configuration after leaving the tidal radius

  14. Slight penetration in the tidal radius Disruption process reproduced by hydrodynamical simulations Ejected matter « cigar-like » configuration after leaving the tidal radius « S-like » configuration at the periastron

  15. Tidal radius Accretion of stellar debris (50%)  Tidal Flares Lidskii & Ozernoy (1979), Rees (1988) Massive black hole

  16. X-ray flare in RXJ 1242-11 (Komossa & Greiner, 1999) UV flare in NGC 4252 (Renzini et al. 1995)

  17. Giant X-UV luminous flares Detection (ROSAT, Chandra, Galex…) of X-UV flares from (non active) galactic nuclei

  18. « Relativistic » Tidal Flares Detection (Swift) of hard-X flares (Lx ~1047 ergs) (Zauderer et al. 2011, Cenko et al. 2012) Relativistic jets from tidal ejecta ? X-UV-optical luminous flares Detection (Chandra, Galex, Pan-starrs…) of flares from (non active) galactic nuclei (Komossa et al., Saxton et al. , Esquej et al., Gezari et al., etc.)

  19. The Pancake Effect (Carter & Luminet, Nature, 1982) Fixed compressive principal direction of the tidal tensor in the « vertical » direction ==> For deep penetration ( > 3)

  20. Cartoon version The « Rolling Mill » Effect fixed compressive point after periastron

  21. Deep penetration (b > 3) in the tidal radius Disruption process in the ellipsoidal model (Luminet & Carter, 1986)

  22. Explosive stellar disruption ? Compression and heating strongly dependent from the penetration factor Maximum values for an ideal gas with polytropic index 5/3 : Conditions required for explosive thermonuclear reactions

  23. Detonation of metals (C, N, O, …) by radiative proton captures (Luminet & Pichon 1989) Helium detonation by triple alpha (Pichon 1985)

  24. Tidally induced supernovae? Luminet, 1986 Rosswog et al., 2008 A special type of GRB ? Carter, 1992 Lu et al. 2008; Gao et al. 2011

  25. Black hole enters the star 109 K Star enters the Black hole 108 K 107 K The pancake triangle (solar type stars) log ( No disruption log(M•/M*)

  26. Shock waves in stellar pancakes (Brassart & Luminet, 2008-2010)

  27. Problematics • Stellar pancakes calculated in the affine model(Luminet et al. 1983- 1989) ==> Elliptical deformations of the star • Stellar pancakes calculated by 3D hydro (Bicknell & Gingold 1983; Laguna et al. 1993; Fulbright 1996) ==> SPH method (uses artificial viscosity to simulate shock waves) N.B. : Generalized affine model(Ivanov et al. 2001-2003)

  28. Disagreement : compression of the stellar core less than in the affine model: max ~ 1.5 for  < 10 max ~ const for  > 10 • Due to shock waves occuring during the phase of vertical direction ?? • Or bad treatment (SPH) of shock waves ?

  29. New Hydrodynamical Model Euler eqs. + Godunov methods 1D approximation valid from the tidal radius to periastron Principal axes of the tidal tensor

  30.  = 7 Tidal radius velocity periastron max.compression Phase1: collapse

  31. Subsonic collapse Supersonic collapse  = 7 velocity max.compression Phase 2: bounce Subsonic expansion

  32. Shock (after bounce)  = 7 density collapse Tidal radius periastron max.compression and bounce

  33.  = 7 temperature shock

  34. = 15 shock 1 (before bounce) velocity shock 2 (after bounce)

  35. shock 2 (after bounce)  = 15 shock 1 (before bounce) density

  36. maximum central density maximum central temperature

  37.  = 10 Shock-driven maximum temperature

  38. Wang & Merritt (2004), Tal (2005) BH binaries : Chen et al (2009) Number of disruption events: UV/X/gamma-ray flares

  39. Long GRB jet jet Short GRB Modelisation of Gamma-Ray Bursts

  40. • g-ray transients Swift J1644+57 and Swift J2058+05(Zauderer 2011, Cenko 2012) • GRB 060614 (long ~100 s) without SN remnant : disruption of a WD by an intermediate mass BH ? (Lu et al. 2008) interpreted as a relativistic outflow from transient accretion onto a 106 Ms black hole • A new class of g-ray bursts from stellar disruptions by IMBH ? (Gao et al., 2010)  From a total of 328 Swift GRBs with accurate measured durations and without SN association, 25 GRBs satisfying the criteria for GRB060614-type bursts…

  41. Relativistic tidal field Luminet & Marck, 1985 E = specific total energy L = specific angular momentum for parabolic orbits : E = 1

  42. Precession effect : self-crossing orbit

  43. Double point inside the tidal radius: Luminet & Marck, 1985

  44. Brassart & Luminet, 2011 Double point inside the tidal radius Several compressions

  45. Multi-pancake effect and X/ bursts • Multi-peak structure and timescales compatible with GRB 970815 (and others ?)

  46. Recent hydro models … • 3D simulationscoupling hydrodynamics and nuclear network (Guillochon et al., 2011): Confirm the occurrence of tidally induced supernovae • Red giants / BH interactions (Mac Leod et al., 2012): Tidal stripping of atmosphere • White dwarfs / IM BH strong encounters (Rosswog et al. 2010, Hass et al. 2012): Confirm nuclear ignition (e.g. helium detonation)

  47. crushing factor b = RT/Rp b = vcoll/v* Supermassive BH > 108 MS Massive BH (104 - 108 MS) Glob. Clusters, GN, Seyfert Quasars, Giant elliptical … Analogy with stellar collisions Around a 109 MS black hole, the typical collisional velocities are > 5000 km/s within a distance 0.1 pc from the black hole

  48. : disruption / : pancake effect High velocity head-on collisions, polytropes 5/3 Barnes, 2003 Makino, 1999

More Related