1 / 57

實證醫學 Evidence-Based Medicine Pharmacy, and Nursing 2010

實證醫學 Evidence-Based Medicine Pharmacy, and Nursing 2010. 林口長庚紀念醫院 實證醫學中心 風濕過敏免疫科主任 余光輝醫師 Chief, Center for Evidence-Based Medicine Chang-Gung Memorial Hospital, Taiwan gout@adm.cgmh.org.tw. The Best Evidence Depends on the Type of Question. What are the phenomena/problems? Observation

Download Presentation

實證醫學 Evidence-Based Medicine Pharmacy, and Nursing 2010

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 實證醫學Evidence-Based Medicine Pharmacy, and Nursing 2010 林口長庚紀念醫院 實證醫學中心 風濕過敏免疫科主任余光輝醫師 Chief, Center for Evidence-Based Medicine Chang-Gung Memorial Hospital, Taiwan gout@adm.cgmh.org.tw

  2. The Best Evidence Depends on the Type of Question • What are the phenomena/problems? • Observation • What is frequency of the problem?(Frequency) • Random (or consecutive) sample • Does this person have the problem?(Diagnosis) • Random(orconsecutive) sample with gold standard • Who will get the problem?(Prognosis) • Follow-up of inception cohort • How can we alleviate the problem?(Therapy) • Randomized controlled trial (RCT)

  3. Current Best Evidence

  4. Are the results of the study Validity (效度)Diagnostic Accuracy Study (診斷試驗) • R: Was the diagnostic test evaluated in an representative spectrum of patients? • mild and severe, early and late, treated and untreated • A: Was the reference standard ascertained regardless of the index test result? • Mbo: Was there an independent, blind comparison with a gold standard of diagnosis? • Was the test validated in a second, independent group of patients?

  5. Importance Diagnostic Test • Accuracy of the test in distinguishing patients with and without the target disorder • Sensitivity (Sn) • Specificity (Sp) • Positive predictive value (PPV) • Negative predictive value (NPV) • Likelihood ratio (LR) • Diagnostic tests that produce big changes from pre-test to post-test probabilities

  6. Questions to answer in applying a valid diagnostic test to an individual patientDiagnostic Test “Applicability” • Is the diagnostic test available, affordable, accurate, and precise in our setting? • Can we generate a clinically sensible estimate of our patient’s pre-test probability? • From personal experience, prevalence statistics, practice databases, or primary studies • Are the study patients similar to our own • Is it unlikely that the disease possibilities have changed since the evidence was gathered • Will the resulting post-test probabilities affect our management and help our patient? • Could it move us across a test-treatment threshold • Would our patient be a willing partner in carrying it out • Would the consequences of the test help our patient reach his or her goals in all this

  7. Critical Appraisal of Diagnostic Accuracy Study“診斷工具”的評讀 • Are the results of the study valid (效度如何?) • Was the diagnostic test evaluated in a representative spectrum of patients (是否經過有代表性的病人群測試過?) • Was the reference standard ascertained regardless of the index test result (標準診斷工具做確診時不知道指標診斷工具的結果?) • Was there an independent, blind comparison between the index test and an appropriate gold standard of diagnosis (標準診斷與指標診斷工具是在獨立且雙盲的情況下進行比較?) • What were the results (結果是甚麼)? • Are test characteristics presented (呈現診斷工具的特性?) • Can we apply to our patient (可以應用到我的病人?) • Were the methods for performing the test described in sufficient detail to permit replication?

  8. Was the diagnostic test evaluated in a representative spectrum of patients 是否經過具有代表性的病人群測試過? □ 是       □ 否       □ 不清楚 評論:___________________

  9. Was the reference standard ascertained regardless of the index test result 標準診斷工具做確診時不知道指標診斷工具的結果? □ 是       □ 否       □ 不清楚 評論:___________________

  10. Was there an independent, blind comparison between the index test and an appropriate gold standard of diagnosis標準診斷工具與指標診斷工具是在獨立且雙盲的情況下進行比較? □ 是       □ 否       □ 不清楚 評論:___________________

  11. Can we apply the results to our patient ? (可以應用到我的病人嗎) • Patients • Are your patients similar enough that the prevalence of the disease in the study population is similar to that in your patients? • Is the severity of the disease in the test population similar to patients you are likely to see? • Benefits • Are there risks associated with the tests? • Are these outweighed by the danger of an undiagnosed disease?

  12. 評讀有關診斷檢查的研究(STUDIES OF DIAGNOSTIC TESTS) • 1.該檢查是否被描述清楚? (包括被界定異常的點) • 2.是否已確立所有病人實際有、無疾病的標準 (金字標準)? • 只要能夠把資料填入2x2表中,就可以知道該檢查各方面的重要效能。 • 3.有、無疾病的受檢病人譜與檢查所要應用的病人之特徵是否配合? • 敏感度常會受疾病嚴重程度影響,特異度常受研究中無病者特徵的影響。 • 4.檢查與疾病狀態的評估是否無偏差? • 如果是在以之急病狀態下決定檢定結果,可能會出現偏差,反之亦然。 • 5.檢查效能是否以敏感度、特異度或概似比來摘要表示? • 這些是在決定選擇何種檢查方法時所需要的資料。 • 6.當檢查值是連續值時,移動分界點對檢查效能有甚麼影響? • 檢查結果是分界點於哪裡定出正常值與異常值的分界而定。 • 7.如果有提及預測值,其臨床上真正的盛行率是否有提出? • 預測值受盛行率及該檢查的敏感度與特異度有所影響,若有無疾病的受檢者是分開選出,與臨床發生的盛行率無關,則由此計算出來的預測值便無任何臨床意義。

  13. K.H. Yu Taiwan

  14. 診斷檢驗Diagnostic testSensitivity. Specificity, PPV, NPV, LR, ROC curve

  15. LR Diagnosis PPV a/a+b NPV d/c+d • Sensitivity(Sn) = a/a+c = 731/809 = 90% SnSp • Specificity (Sp) = d/b+d = 1500/1770 = 85% (敏感度會受疾病嚴重程度影響) • Positive predictive value (PPV) =a/a+b = 731/1001 = 73% (=post-test probability) • Negative predictive value (NPV) =d/c+d= 1500/1578 = 95% • 但 ♠ 診斷試驗的預測值 (predictive value)受疾病的盛行率(prevalence)影響。 • Positive predictive value (PPV) = Sen . P / [Sen . P + (1-Sp) . (1-P)] (貝氏定理) • P= 0.5, PPV= 0.8×0.5 / [0.8×0.5+0.2×0.5] = 0.8 = 80.0% • P= 0.05, PPV= 0.8×0.05 / [0.8×0.05+0.2×0.05] = 17.4% • P= 0.005, PPV= 0.8×0.005 / [0.8×0.005+0.2×0.005] = 0.2% • 同一診斷工具, 在不同盛行率情況下, 其 Predictive value 結果不同。~ LR概似比 Specificity 高,但運用在盛行率低的族群時,大部分陽性結果是假陽性。 Sensitivity 高,但運用在盛行率高的族群時,大部分陰性結果是假陰性。 例:Ovarian cancerCA-125: PPV ~ 2% in screen vs. 97% in pelvic mass cases

  16. Prevalence (different clinical situations)affect predictive value 例: Ovarian cancer CA-125: PPV ~ 2% in screen vs. 97% in pelvic mass cases • Increasing the Prevalence of Disease Before Testing :When the prevalence of disease in the population tested is relatively high - more than several percent - the test perform well. Community-wide HIV screening Test: 90% sensitivity, 99% specific Population 10,000 Prevalence 0.1% = 10/10,000 PPV = 9/(9+100) = 0.08 = 8% NPV= 9890/(1+9890) = 0.9999 = 99.99% PPV 同一診斷工具, 在不同盛行率情況下, 其 Predictive value 結果不同 Note: spectrum of patients, age, gender, risk factors, clinical findings (prevalence)

  17. Increasing the Prevalence of Disease Before Testing~ Prevalence affect thePPV Community-wide HIV screening Test: 90% sensitivity, 99% specific Population: 10,000 Prevalence: 0.1%= 10/10,000 PPV = 9/(9+100) = 0.08 = 8% NPV = 9890/(1+9890) = 0.9999 = 100% Population = 10,000 Prevalence = 10%= 1000/10,000 Sensitivity = 900/1000 = 90% Specificity = 8910/9000 = 99% PPV = 900/990 = 0.91 = 91% NPV = 8910/9010 = 0.99 = 99%

  18. Diagnosis LR: likelihood ratio(multi-levels odds) + PV - PV Sensitivity = TP/(TP+FN) = a/a+c = 731/809 = 90% Sn SpSNout, SpPin Specificity = TN/(FP+TN) =d/b+d = 1500/1770 = 85% Positive predictive value (PPV) = a/a+b = 731/1001 = 73%(=post-test probability) Negative predictive value (NPV) = TN/(FN+TN) =d/c+d = 1500/1578 = 95% LR+for a positive result = Sens/(1- Spec) = a/(a+c) / b/(b+d) = 90%/15% = 6 陽性概似比LR+=敏感度/(1-特異度) = TP/FP= 有病者與無病健康者,檢驗呈陽性的機率勝算比 LR-for a negative result = (1-sens)/spec =c/(a+c)/d /(b+d) = 10%/85% = 0.12 Pre-test probability (prevalence)= a+c/a+b+c+d= 31% Pre-test odds = prevalence / (1-prevalence) = 31%/69% = 0.45 * Post-test odds = Pre-test odds × LR = 0.45 × 6 =2.7 Posttest probability = Posttest odds / (odds + 1) = 2.7/(2.7+1) = 73%(= PPV 73%)

  19. Likelihood Ratio (2, 5, 10, multi-levels odds) • LR+陽性概似比 (LR of a positive test result, LR+) = 敏感度 / (1-特異度) • LR + = 有病者與健康者 檢驗呈陽性的機率比 (勝算 an odd) = TP / FP • (Benefit: multi-levels, not just binary of yes or no)

  20. Receiver operating characteristic(ROC)curve ~ selecting a cutoff point for continuous data TN TP FN FP IIβ Iα Importance of cut-off value on test performance. As the cut-off is moved to left, sensitivity (true positive, TP) increases, but specificity (true negative, TN) decreases. FN = false negative Diagnosis: Cut-off PointTrade-offsbetween sensitivity and specificity敏感度與特異度之間的取捨 • Moving this point changes sensitivity and specificity of the test. (trade-offs between Sensitivity and Specificity) Without disease With disease

  21. Receiver operating characteristic(ROC)curve ~ selecting a cutoff point • 以真陽性(敏感度)為縱軸,假陽性(1-特異度)為橫軸,即將有病和沒病健康者試驗結果呈陽性的機率做一比較。 • ROC curve: Select a cut-off point for continuous data. • If the area under the ROC curve is 0.5 (null hypothesis), the model has no discriminatory power. • 由檢驗結果,做診斷時Note: spectrum of patients (敏感度會受疾病嚴重程度影響), age, gender, risk factors, clinical findings (prevalence)

  22. ROC curve 以真陽性(敏感度)為縱軸,假陽性(1-特異度)為橫軸,即將有病和沒病健康者試驗結果呈陽性的機率做一比較。 Trade-offsbetween sensitivity and specificity Optimum cutoff point correlated with the best Youden index = (sensitivity + specificity -1) TP Useless AUROC: >0.8 0.9 – 1.0 excellent 0.8 – 0.9 good 0.7 -0.8 fair 0.6 – 0.7 poor < 0.6 useless (null 0.5) ROC curve: selecting a cut-off point for continuous data. (Sensitivity vs. 1-Specificity) FP

  23. A B Trade-offs between sensitivity and specificity

  24. Diagnosis • Use of Sensitivity Test (高敏感度檢查的運用) • Treatable disease Screening: maximize sensitivity while optimizing specificity • 未被檢查出來會有嚴重後果者 treatable or transmissible • e.g. screen donated blood for HIV, Pap smear, mammograms • Rule out disease ~ (SNout) e.g. ANA • Use of Specificity Test (高特定度檢查的運用) • 當假陽性結果會傷害患者身體、情緒、財物時 • e.g. cancer chemotherapy • Rule in disease ~ (SPin) Diagnosis: maximize specificity while optimizing sensitivity. e.g. anti-ds DNA • ROC(receiver operating characteristic) curve • 以真陽性(TP, 敏感度)為縱軸,假陽性(FP, 1-特異度)為橫軸,即將有病及無病者檢驗結果呈陽性的機率做一比較。ROC curve下方的面積越大,診斷工具的準確度越好 • Optimum cutoff point correlated with the best Youden index = (sensitivity + specificity - 1) • c.f. LR+for a positive result = sensitivity / (1- specificity): The probability of that test result in people with the disease divided by the probability of the result in people without disease • Accuracy: proportion of correct results = (a+d) / (a+b+c+d) = (prevalence x sensitivity) + (1-prevalence) x (specificity) = TP+TN / (TP+TN+FP+FN)

  25. Diagnosis Strategies Serial vs. parallel test • Serial Test (高特定度) • The result of test 1 are considered before test 2, and so on • In order to be considered positive, all test in the series must be positive • Highly specific but insensitive • Useful when false positive are undesirable • Such as treatment is highly invasive or toxice.g. cancer chemotherapy • Parallel Test (高敏感度) • Any positive is considered a positive • Sensitive but not specific • Useful when rapid diagnosis is necessary and a missed diagnosis in undesirable

  26. Take Home Message*實證醫學五步驟EBM步驟一:形成一個可以回答的臨床問題(Ask) 試著將您的問題分成下列四個部分(PICO): □ Patient or Problem 病人或問題 □ Intervention or Indicator 介入或指標 • 某種治療、檢查、危險因子等 □ Comparator 比較- 該治療和甚麼相比? □ Outcome 結果- 您想要達成或避免甚麼? *Question Log – A tool for just in time learning. Carl Heneghan, Paul Glasziou以下“Take home message”資料主要係參考由台北醫學大學.市立萬芳醫院實證醫學中心經授權作中文編譯,英國The Centre for Evidence-Based Medicine及The National Library for Health, NHS所出版由Carl Heneghan及Paul Glasziou撰寫之Questions Log: A tool for ‘just in time’ learning手冊。任何形式之引用請註明文獻出處。

  27. EBM 步驟二:搜尋最佳證據(Acquire) • 利用問題的 PICO結構(如上述 Ask)設定搜尋策略。 • 回想問題中各PICO部份的每一個辭彙及同義詞。一次就單一PICO元素進行搜尋。如,從介入(Intervention)開始,但必須確定你已聯集(OR)所有的同義詞。 • 可以使用截斷字 (truncation),並加上”*”,如以child*取代children搜尋文件:請試著從Cochrane開始;其他問題型態則建議試試PubMed: Clinical Queries 或National Library for Health (NLH)。 • Dr. YuKH ~ PubMed 快速搜尋技巧: (P) and (I) and (Cochrane or meta-analysis or systematic review)

  28. 步驟三 Appraisal:嚴格評讀證據之(a)效度與(b)重要性(效益大小) • (a) 效度 (Validity) 各種形式的問題都含以下三個共同項目 (RAM-bo) • 研究族群是否具有代表性(Representative)? • 隨機選擇(random selection)/連貫性/起始點病人群,或者如果是比較性的研究,組別間是否可以比較?隨機分派(random allocation)/調整 • 是否有足夠的確認和追蹤(Ascertainment/follow-up)? • 反應率/追蹤/確認> 80% • 結果的估計值測量(Measurement) 是否公正無偏?恰當? • 結果以盲法(blinded)或客觀的(objective)估計 • 以上這些答案,通常可以在文章中的方法學(Method)部分和結果(Result)的第一、二段中找到。這樣的評讀,一開始可能會令您覺得困難重重(就像騎腳踏車一樣),但是,累積了一些經驗之後,您只要幾分鐘就能完成 • (b) 重要性-效益大小 • 看結果段 (Results section)中描述的主要結果。效果有多大?多重要?統計意義要看信賴區間及P值;相對危險(relative risk)、相對危險性降低度(relative risk reduction)、勝算比(odds ratio)代表生物學上的影響。效果的絕對估計值:絕對危險性降低(absolute risk reduction)、益一需治數(NNT, number needed to treat)則代表在臨床上對病人的影響。

  29. EBM 步驟四:將證據與臨床專業經驗及病人期望結合(Apply) □ 您的病人是否與研究中的病人差別很大,以至 於無法適用該研究結果? □ 您期望您的病人從研究結果中獲得多大的好處? □ 還有哪些替代方案? □ 研究結果適用於您的病人嗎? □ 病人的想法為何? 研究效果需要因應個別病人做調整,如治療Patient NNT = 1/ (RRR × PEER)

  30. EBM 步驟五:評估執行效果及效用-勤做紀錄,改善過程 最後一個步驟,看在執行過程中,您的表現如何?您可能要問自己下列幾個問題: □ 您正在紀錄您的問題嗎? □ 您是否正在廣大的資源中尋找有用的外部證據? □ 您有能力將這些證據應用在適當的病人身上嗎? □ 您是否依循這些新證據來改變您的診療習慣?

  31. 第十屆醫療品質獎

  32. 參 考 附 件 Appendix • For further reading • A: critical appraisal checklist • B: statistical concepts

  33. 評讀附件: Critical Appraisal • Oxford - Critical Appraisal Sheets • 1. RCT (therapy study) • 2. Systematic review • 3. Diagnostic test • CASP • Critical Appraisal Skills Programme (CASP) appraisal tool • http://www.phru.nhs.uk/pages/PHD/resources.htm • 推薦中文版 Clinical Epidemiology: The Essentials. Third edition. Robert H. Fletcher, et al. Wagner. Williams & Wilkins. 1996

  34. 決定臨床研究效度的基本指引所有研究 (ALL STUDIES) • 1.本研究想要回答何種臨床問題? • 研究設計應配合臨床問題 • 2.研究的病人、變項及結果為何? • 這幾點決定研究結果的可類推性 • 3.研究結果是由偏差造成的可能性有多大? • 組間若有系統差異(譬如病人特徵、介入、危險因子、結果、測量方法等),將會降低內在效度。 • 4.效果有多大? • 臨床決定不只考慮有無效果,還要考慮效果的大小。 • 5.研究結果是由機會造成的可能性有多大? • 須知道真實效果可能出現的範圍(信賴區間),及(用處較小)觀察結果是單由機會造成的可能(「陽性」結果用p值,「 陰性」 結果用檢力)。

  35. Critical Appraisal of Therapy Study“治療研究”的評讀 • Are the results of the trial valid (效度如何)? • Was the assignment of patients to treatment randomized(是隨機分配嗎?) • Were the groups similar at the start of the trial (試驗開始時兩組條件是否相似?–表一) • Aside from the allocated treatment, were groups treatedequally(兩組的其他治療一樣嗎?) • Were all patients who entered the trial accounted for? - and were they analyzed in the groups to which they were randomized (所有進入試驗者皆列入統計,並依所分配的組別計算?ITT analysis) • Were measures objective or were the patients and clinicians keep blinded to the treatment (結果的測量客觀?受試者及醫師都不知道所接受的治療為何?盲性評估)

  36. Critical Appraisal of Therapy Study“治療研究”的評讀 • What were the results (結果為何)?(important?) • How large was the treatment effect (治療的效果有多大?) • RR (relative risk) • ARR (absolute risk reduction) • RRR (relative risk reduction) • NNT (number needed to treat) • How precise was the estimate of the treatment effect (治療效果的預測有多準確?) • Point estimate 點估計 • CI (confidence interval) 95%信賴區間 (cover null hypothesis?) • Will the results help me in caring for my patient (結果適用於我的病人嗎)? (applicability?)

  37. Was the assignment of patients to treatment randomized是隨機分配嗎? □ 是       □ 否       □ 不清楚 評論:___________________

  38. Were the groups similar at the start of the trial試驗開始時兩組條件是否相似? □ 是       □ 否       □ 不清楚 評論:___________________

  39. Aside from the allocated treatment, were groups treated equally兩組其他的治療條件一樣? □ 是       □ 否       □ 不清楚 評論:___________________

  40. Were all patients who entered the trial accounted for and were they analyzed in the groups to which they were randomized所有進入試驗者皆列入統計,並依所分配的組別計算? □ 是       □ 否       □ 不清楚 評論:___________________

  41. Were measures objective or were the patients and clinicians were blinded結果的測量客觀,受試者及醫師都不知道所接受的治療為何? □ 是       □ 否       □ 不清楚 評論:___________________

  42. How large was the treatment effect 治療效果有多大? 某研究追蹤二年,對照組死亡率15%,治療組死亡率10%, 結果呈現的方式有下列幾種:

  43. How precise was the estimate of the treatment effect 治療效果的預測多準確? • The true risk of the outcome in the population is not known • The best we can do is to estimate the true risk based on the sample of patients in the trial • We can gauge how close this estimate is to the true value by looking at the confidence intervals (CI) • Narrow CI represents a precise reflection of the population value • The CI also provides us with information about the statistical significance of the result • If the value corresponding to no effect falls outside the 95% CI then the result is statistically significant at the 0.05 level • If the CI includes the value corresponding to no effect then the results are not statistically significant (null hypothesis) • ITT vs. per protocol analysis:如果不是每位病人都實際接受被分派的治療,這時必須依不同目的與不同科學強度進行不同的分析。『意圖治療』分析是針對管理決策,所以是以分派的治療來分析;『per protocol』分析是要解釋介入本身的效果,所以要以實際接受的治療分析。

  44. Will the Results Help Me in Caring for My Patients ? • Is our patient so different from those in the study that its results cannot apply ? (Are the people in the study like my patient? – note inclusion criteria) • Data from Taiwan, China, or Asia (種族差異)? Cost-effectiveness analysis (效益分析) • Do I miss any data?同時手動搜尋所選文章之參考文獻及專家回顧文獻 與詢問專家 • Age, general state of health, type and severity of disease process, time in the course of the disease (i.e. applicability) • Is the treatment feasible in my setting? • Will the potential benefits of treatment outweigh the potential harms of treatment for my patients? • Did the study cover all aspects of problem? • Does it suggest a clear and useful plan of action? • help to clarify a patient’s prognosis • suggest a useful plan to improve patient’s state of health

  45. 統合分析(META-ANALYSES) • 1.是否已找出所有相關的研究 • 包括已出版及未出版的研究? • 目的是要綜合全體研究的結果,而非有偏差的樣本研究。 • 2.是否只包含合乎科學原則的研究 • 極少偏差的研究? • 研究必須依據最可靠的證據。 • 3.估計效果時: • a.研究是否具同性質(病人、介入及研究結果均類似)? • 從完全不相似的研究中找出整體效果的測量值是不合適的。 • b.是否以各研究的樣本大小加權計算(weighting)? • 加權計算時,樣本數大(精密度高)者的權值是否較樣本數小(精密度低)者為大? • 4.研究品質與結果有無相關? • 品質佳的研究較可信。

  46. Critical Appraisal of Systematic Review“系統性回顧”的評讀 • Are the results of the review valid (效度如何?) • What question (PICO) did the systematic review address (回答什麼問題?) • Is it unlikely that important, relevant studies were missed (有沒有遺漏重要的文獻?) • Were the criteria used to select articles for inclusion appropriate (選擇文獻的條件準則適當?) • Were the included studies sufficiently valid for the type of question asked (選擇的文獻有效回答所問的問題?) • Were the results similar from study to study (各研究間結果相似?無異質性) • What were the results (結果為何?) • How are the results presented (結果如何呈現? Meta-analysis Forest plot, heterogeneity chi-square Cochran Q)

  47. What question (PICO) did the systematic review addressed 系統性回顧想要回答什麼問題? □ 是       □ 否       □ 不清楚 評論:___________________

  48. Is it unlikely that important, relevant studies were missed沒有遺漏重要的文獻? □ 是       □ 否       □ 不清楚 評論:___________________

  49. Were the criteria used to select articles for inclusion appropriate選擇文獻的準則適當? □ 是       □ 否       □ 不清楚 評論:___________________

More Related