2.8k likes | 2.85k Views
電源 IC 與電路設計 【Lab】. 實習相關原理. 江炫樟. sjchiang@nuu.edu.tw. 國立聯合大學電機系. Contents. Buck, Boost, Buck-Boost Converters Voltage-Mode Control Peak Current-Mode Control Flyback Adapter LED Driver CCFL Inverter Photovoltaic (PV) Charger. 進度.
E N D
電源IC與電路設計【Lab】 實習相關原理 江炫樟 sjchiang@nuu.edu.tw 國立聯合大學電機系
Contents • Buck, Boost, Buck-Boost Converters • Voltage-Mode Control • Peak Current-Mode Control • Flyback Adapter • LED Driver • CCFL Inverter • Photovoltaic (PV) Charger
Power Electronics: Converter, Applications and Design N. Mohan, T. M. Undeland and W. P. Robbins Wiley (電力電子學,江炫樟編譯,全華書局) Switching Power Supply Design Abrahan I. Pressman Mcgraw-Hill Inc. Fundamental of Power Electronics Robert W. Erickson Kluwer Academic Publisher (KAP) Unitrode Seminar Data Sheets of Related Power Management ICs References References
DC-DC Basic Topologies of Switching-mode DC-DC Converters • Buck-Boost Converter (Step-down and Step-up) • Buck Converter (Step-down) • Bridge Converter (4 quadrants) • Boost Converter (Step-up)
DC-DC Basic Topologies of Switching-mode DC-DC Converters With Isolation • Flyback Converter (buck-boost derived) • Full-bridge Converter (buck derived) • Forward Converter (buck derived) • Current-fed Converter (boost derived) • Push-Pull Converter (buck derived)
Buck Converter PWM (Pulse Width Modulation) • Duty ratio • Second-order low-pass filter
Buck Converter B2 B1 Buck Converter • Continuous Conduction Mode Balance of voltage-second A = B
Buck Converter • Boundary condition • For constant Vd at D = 0.5 • For constant Vo at D = 0
Buck Converter • Discontinuous Conduction Mode (DCM) • For constant Vd • For constant Vo
Design of Output Filter Designed with boundary condition at minimum load (Io=IoB) to ensure continuous conduction mode at any load L For High ESR C Voltage ripple due to Ro (ESR) 大小由電容材質決定 典型30~80×10-6
Buck Converter • Output voltage ripple (CCM) For Low ESR
Capacitor Design with Voltage Regulation (Low ESR) DVo DPo + Vo - C
Buck Converter Capacitors Conventional • Aluminum electrolytic • Tantalum • Ceramic New • Solid polymer aluminum (SPA) • Aluminum with an organic electrolyte (OS-CON) • Tantalum with organic electrolyte (POSCAP)
Boost Converter Boost Converter A • CCM B Output voltage Output voltage ripple
Boost Converter Steady-state Equivalent-circuit Model (including RL)
Boost Converter Steady-state Equivalent-circuit Model (including RL)
Boost Converter Output Voltage VS. Duty Cycle
Boost Converter Efficiency VS. Duty Cycle
Boost Converter • Boundary condition At D = 0.5 At D = 0.333
Boost Converter • Discontinuous Conduction Mode
Buck Boost Converter Buck-Boost Converter • Continuous Conduction Mode Output voltage Output voltage ripple
Buck Boost Converter • Boundary condition At D=0 At D=0
Buck Boost Converter • Discontinuous Conduction Mode
Voltage-mode Control Compensator Design of Error Amplifier for Voltage-Mode Control • Fundamental of Bode Plot One Zero Two zeros One zero One Pole Two Poles One zero : the phase will lead 90o finally (+90o) One pole : the phase will lag 90o finally (-90o) -1 slope = -20dB/decade
A More Accurate Bode Plot Pole Zero
Two-pole low-pass filter with high Q RHP Zero 0 90 180 fo fb fa
Voltage-mode Control Loop Gain dB degree -60 -100 -140 -180 Close-Loop Design Criterion Loop Gain should satisfy: • The total phase shift at the crossover frequency (0 dB point) is less than 360o • The gain slope as it pass through the crossover frequency should be –1 • Provide the desired phase margin 45o~60o
Voltage-mode Control LC-Filter + Vo - + Voi - Sampling VFB R2 Rs1 R1 vcon Rs2 Error-Amp PWM+Converter Modeling of Converter and Feedback Controller Design
Voltage-mode Control Vi Gain of PWM Converter PWM+Converter Vt Vcon Vi Voi Ton Ts Sampling
Voltage-mode Control Gain Characteristics of LC-Filter • Low ESR • With ESR
Voltage-mode Control Type II Error Amplifier Design (For C with High ESR) • Set the crossover frequency Fco at 1/4 ~ 1/5 switching frequency (usually Fesr is lower than Fcoso the gain curve will be at –1 slope region) • Choose the error amplifier gain at Fco to be equal and opposite in dB to Gt = (Glc+Gpwm+Gs) • Fp is selected to prevent high frequency noise • Fz and Fp are designed based on K-factor method to satisfy the phase margin • K = Fco/Fz= Fp/Fco
Voltage-mode Control 8. K C1 and C2 K-Factor Design 6. Assign R1 and obtain R2 K is obtained by phase margin: 7.
Voltage-mode Control Phase lag • Phase lag of type II error Amp Fp FZ 180o from the inversion 90o from the pole at origin • Phase lag through an LC filter at Fco :
Voltage-mode Control Example Vi = 20.0V Vo = 5.0V Ion(nominal) = 5A Io(min) = 1A Switching frequency = 100KHz Vt = 3V, Vref=2.5V Minimum output ripple DV(p-p) = 50mV
Voltage-mode Control 30 Fz Fp 20 Gt = Glc+Gm+Gs Fo 10 Fco 0 1k 100k 10k 10 100 Fesr -10 -20 -30 -40 Choose Fco=100K/5=20KHz Gt(Fco)=-28dB, so the error amplifier gain at Fco is +28dB(=25) Let R1=1KW then R2=25KW Assume 45o phase margin The total phase shift around 20KHz is 360-45=315o K=3 is chosen The phase of error amplifier is 315-97=218o The phase lag for LC is 97o Fz=20K/3=6.7K Fp=20Kx3=60K
Voltage-mode Control PSIM Simulation
Voltage-mode Control Simulation Results
Voltage-mode Control Type III Error Amplifier (For C with low ESR) • Design criterion is the same as the Type II • K-factor can be employed 1 pole
Voltage-mode Control Lag Realization of Type III Error Amplifier 2 poles 1 poles Phase lag (one pole)
Example Voltage-mode Control Vi = 20.0V Vo = 5.0V Ion(nominal) = 5A Io(min) = 1A Switching frequency = 50KHz Vt = 3V (Vref=0.625V) Minimum output ripple Vor(p-p) = 20mV 50dB Fo Gt = Glc+Gm+Gs Fco (Gs=0.125) Co=2600uF (Re=0) Gt(Fco)=-50dB, so the error amplifier gain at Fco is +50dB Choose Fco=50K/5=10KHz Assume 45o phase margin The total phase shift around 10KHz is 360-45=315o K=5 is chosen The phase of error amplifier is 315-180=135o The phase lag for LC is 180o Choose R1=10K, the gain of error amplifier at 2KHz is +37dB(=70.8) So R2/R1=70.8, R2=708K Fz=10K/5=2K Fp=10Kx5=50K
Voltage-mode Control PSIM Simulation
Voltage-mode Control Simulation Results
Voltage-mode Control Error Amplifier with Transconductance (OTA) • Equivalent circuit
Voltage-mode Control PSIM Simulation – Type II OTA
Voltage-mode Control Simulation Results
Voltage-mode Control PSIM Simulation – Type III OTA
Voltage-mode Control Simulation Results
Sync-Buck Converter Conduction loss ILRDS(on) Q1 Q2 CCM DCM Td Td Ts Conduction loss ILVDF Q1 D1 CCM + Vo - None DCM Synchronous Buck Converter Q1 IL Q2 Conventional Buck
Sync-Buck Converter Dual Mode Control (PWM + PFM) CCM => DCM PWM => PFM(Hysteretic) (Burst Mode) DCM => CCM PFM(Hysteretic) => PWM