1 / 70

Understanding Air Pollution: Impacts, Prevention, and Control Measures

Dive into the layers of the atmosphere, key outdoor air pollutants, effects of smog, acid deposition reduction methods, and ways to prevent air pollution. Discover harmful effects of pollutants and explore control strategies.

wmurray
Download Presentation

Understanding Air Pollution: Impacts, Prevention, and Control Measures

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 19 Air Pollution

  2. Chapter Overview Questions • What layers are found in the atmosphere? • What are the major outdoor air pollutants, and where do they come from? • What are two types of smog? • What is acid deposition, and how can it be reduced? • What are the harmful effects of air pollutants? • How can we prevent and control air pollution?

  3. Updates Online The latest references for topics covered in this section can be found at the book companion website. Log in to the book’s e-resources page at www.thomsonedu.com to access InfoTrac articles. • InfoTrac: Indoor air pollution. Eva Rehfuess, Carlos Corvalan, Maria Neira. Bulletin of the World Health Organization, July 2006 v84 i7 p508(1). • InfoTrac: Risks of cleaning house disclosed. San Jose Mercury News (San Jose, CA), May 23, 2006. • InfoTrac: Pollution From Chinese Coal Casts Shadow Around Globe. Keith Bradsher, David Barboza. The New York Times, June 11, 2006 pA1(L). • American Industrial Hygiene Association: Do I Work in a Sick Building? • PBS: Deadly Smog • EPA: Toxic Air Pollutants

  4. Video: Air Pollution • This video clip is available in CNN Today Videos for Environmental Science, 2004, Volume VII. Instructors, contact your local sales representative to order this volume, while supplies last.

  5. Video: Smog Pollution • This video clip is available in CNN Today Videos for Environmental Science, 2004, Volume VII. Instructors, contact your local sales representative to order this volume, while supplies last.

  6. Core Case Study: When Is a Lichen Like a Canary? • Lichens can warn us of bad air because they absorb it as a source of nourishment. Figure 19-1

  7. Core Case Study: When Is a Lichen Like a Canary? • Some lichen species are sensitive to specific air-polluting chemicals. • After Chernobyl, more than 70,000 reindeer had to be killed because they ate highly radioactive lichens. • Because lichens are widespread, long-lived, and anchored in place, they can help track pollution to its source.

  8. STRUCTURE AND SCIENCE OF THE ATMOSPHERE • The atmosphere consists of several layers with different temperatures, pressures, and compositions. Figure 19-2

  9. Atmospheric pressure (millibars) Temperature Pressure Thermosphere Mesopause Heating via ozone Mesosphere Altitude (kilometers) Altitude (miles) Stratopause Stratosphere Tropopause Ozone “layer” Heating from the earth Troposphere Pressure = 1,000 millibars at ground level (Sea level) Temperature (˚C) Fig. 19-2, p. 440

  10. Temperature Satellites Orbit between 150 and 300 miles Space Begins Pressure Thermosphere Mesopause Mesosphere Stratopause Stratosphere All weather

  11. STRUCTURE AND SCIENCE OF THE ATMOSPHERE • The atmosphere’s innermost layer (troposphere) is made up mostly of nitrogen and oxygen, with smaller amounts of water vapor and CO2. • Ozone in the atmosphere’s second layer (stratosphere) filters out most of the sun’s UV radiation that is harmful to us and most other species.

  12. Five Major Atmospheric Issues • Smog – several types • Acid Deposition • Indoor Air Pollution • Ozone Depletion • Climate Change Chapter 19 Chapter 20

  13. AIR POLLUTION • Some primary air pollutants may react with one another or with other chemicals in the air to form secondary air pollutants. Figure 19-3

  14. Primary Pollutants Secondary Pollutants CO CO2 SO2 NO NO2 SO3 Most hydrocarbons HNO3 H3SO4 Most suspended particles H2O2 O3 PANs Most NO3– and SO42– salts Natural Stationary Sources Mobile Fig. 19-3, p. 442

  15. Major Air Pollutants • Carbon oxides: • Carbon monoxide (CO) is a highly toxic gas that forms during the incomplete combustion of carbon-containing materials. • 93% of carbon dioxide (CO2) in the troposphere occurs as a result of the carbon cycle. • 7% of CO2 in the troposphere occurs as a result of human activities (mostly burning fossil fuels). • It is not regulated as a pollutant under the U.S. Clean Air Act.

  16. How Would You Vote? To conduct an instant in-class survey using a classroom response system, access “JoinIn Clicker Content” from the PowerLecture main menu for Living in the Environment. • Should carbon dioxide be regulated as an air pollutant? • a. No. Because funds are limited, they should be spent on regulating and reducing more toxic air pollutants, such as mercury. • b. Yes. Carbon dioxide is a serious greenhouse gas and its emissions must be regulated and reduced.

  17. Major Air Pollutants • Nitrogen oxides and nitric acid: • Nitrogen oxide (NO) forms when nitrogen and oxygen gas in air react at the high-combustion temperatures in automobile engines and coal-burning plants. NO can also form from lightning and certain soil bacteria. • NO reacts with oxygen in the air to form NO2. • NO2 reacts with water vapor in the air to form nitric acid (HNO3) and nitrate salts (NO3-) which are components of acid deposition.

  18. Major Air Pollutants • Sulfur dioxide (SO2)andsulfuric acid: • About one-third of SO2 in the troposphere occurs naturally through the sulfur cycle. • Two-thirds come from human sources, mostly combustion (S+ O2 SO2) of sulfur-containing coal and from oil refining and smelting of sulfide ores (galena, pyrite, others). • SO2 in the atmosphere can be converted to sulfuric acid (H2SO4) and sulfate salts (SO42-) that return to earth as a component of acid deposition.

  19. Major Air Pollutants • Suspended particulate matter (SPM): • Consists of a variety of solid particles and liquid droplets small and light enough to remain suspended in the air. • The most harmful forms of SPM are fine particles (PM-10, with an average diameter < 10 micrometers) and ultrafine particles (PM-2.5). • According to the EPA, SPM is responsible for about 60,000 premature deaths a year in the U.S.

  20. Major Air Pollutants • Ozone (O3): • Tropospheric ozone is a secondary pollutant in smog, while stratospheric ozone protects us from ultraviolet light • At ground level, ozone is a highly reactive gas that is a major component of photochemical smog. • It can • Cause and aggravate respiratory illness. • Can aggravate heart disease. • Damage plants, rubber in tires, fabrics, and paints.

  21. Major Air Pollutants • Volatile organic compounds (VOCs): • Quotes from the EPA website: Volatile organic compounds (VOCs) are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects. Concentrations of many VOCs are consistently higher indoors (up to ten times higher) than outdoors. VOCs are emitted by a wide array of products numbering in the thousands. Examples include: paints and lacquers, paint strippers, cleaning supplies, pesticides, building materials and furnishings, office equipment such as copiers and printers, correction fluids and carbonless copy paper, graphics and craft materials including glues and adhesives, permanent markers, and photographic solutions.

  22. Major Air Pollutants • Volatile organic compounds (VOCs): • Includes hydorcarbons emitted by the leaves of many plants along with methane from decomposing plant matter. • About two thirds of global methane emissions come from human sources. • Other VOCs include industrial solvents such as trichlorethylene (TCE), benzene, and vinyl chloride. • Long-term exposure to benzene can cause cancer, blood disorders, and immune system damage.

  23. Major Air Pollutants • Radon (Rn): • Is a naturally occurring radioactive gas found in some types of soil and rock. • It can seep into homes and buildings sitting above such deposits.

  24. URBAN OUTDOOR AIR POLLUTION • Industrial smog is a mixture of sulfur dioxide, droplets of sulfuric acid, and a variety of suspended solid particles emitted mostly by burning coal. • In most developed countries where coal and heavy oil is burned, industrial smog is not a problem due to reasonably good pollution control or with tall smokestacks that transfer the pollutant to rural areas.

  25. Case Study: South Asia’s Massive Brown Cloud • A huge dark brown cloud of industrial smog, caused by coal-burning in countries such as China and India, stretches over much of southeastern Asia. • In areas beneath the cloud, photosynthesis is reduced, interfering with crop development. • Fine particles and droplets in the cloud appear to be changing regional climates (including rainfall). • May have contributed to floods in 2002 and 2005 which killed thousands of people.

  26. Sunlight plus Cars Equals Photochemical Smog • Photochemical smog is a mixture of air pollutants formed by the reaction of nitrogen oxides and volatile organic hydrocarbons under the influence of sunlight.

  27. Sunlight plus Cars Equals Photochemical Smog • Mexico City is one of the many cities that suffer from photochemical smog resulting from the combination of their sunny, warm, dry climate and many motor vehicles.

  28. Factors Influencing Levels of Outdoor Air Pollution • Outdoor air pollution can be reduced by: • settling out, precipitation, sea spray, winds, and chemical reactions. • Outdoor air pollution can be increased by: • urban buildings (slow wind dispersal of pollutants), mountains (promote temperature inversions), and high temperatures (promote photochemical reactions).

  29. Temperature Inversions Reno! • Cold, cloudy weather in a valley surrounded by mountains can trap air pollutants (left). • Areas with sunny climate, light winds, mountains on three sides and an ocean on the other (right) are susceptible to inversions. Figure 19-5

  30. On cold mornings, the early morning sun warms the upper air layers before the sun rises over the mountains. Since warm air rises, the cool air at ground level is trapped – and so is any smog it contains. In sunshine – warm air In shadow – cold air This is known as an inversion, since usually the warmest air is at ground level (higher elevation = colder air, right?) – but here is flipped upside down and the smog may be stuck in the valley for weeks, until the wind blows it somewhere else or rain washes it out of the air.

  31. ACID DEPOSITION • Sulfur dioxides, nitrogen oxides, and particulates can react in the atmosphere to produce acidic chemicals that can travel long distances before returning to the earth’s surface. • Tall smokestacks reduce local air pollution but can increase regional air pollution.

  32. ACID DEPOSITION • Acid deposition consists of rain, snow, dust, or gas with a pH lower than 5.6. Figure 19-6

  33. Wind Transformation to sulfuric acid (H2SO4) and nitric acid (HNO3) Windborne ammonia gas and particles of cultivated soil partially neutralize acids and form dry sulfate and nitrate salts Wet acid depostion (droplets of H2SO4 and HNO3 dissolved in rain and snow) Nitric oxide (NO) Sulfur dioxide (SO2) and NO Dry acid deposition (sulfur dioxide gas and particles of sulfate and nitrate salts) Acid fog Farm Lakes in shallow soil low in limestone become acidic Ocean Lakes in deep soil high in limestone are buffered Fig. 19-6, p. 448

  34. ACID DEPOSITION • pH measurements in relation to major coal-burning and industrial plants. Figure 19-7

  35. ACID DEPOSITION • Acid deposition contributes to chronic respiratory disease and can leach toxic metals (such as lead and mercury) from soils and rocks into acidic lakes used as sources for drinking water.

  36. ACID DEPOSITION Figure 19-8

  37. ACID DEPOSITION • Air pollution is one of several interacting stresses that can damage, weaken, or kill trees and pollute surface and groundwater. Figure 19-9

  38. Emissions SO2 NOx Acid deposition H2O2 O3 Others PANs Susceptibility to drought, extreme cold, insects, mosses, & disease organisms Reduced photo-synthesis and growth Direct damage to leaves & bark Tree death Soil acidification Reduced nutrient & water uptake Root damage Leaching of soil nutrients Release of toxic metal ions Acids Lake Groundwater Fig. 19-9, p. 451

  39. Solutions Acid Deposition Prevention Cleanup Reduce air pollution by improving energy efficiency Add lime to neutralize acidified lakes Reduce coal use Add phosphate fertilizer to neutralize acidified lakes Increase natural gas use Increase use of renewable energy resources Burn low-sulfur coal Remove SO2 particulates & NOx from smokestack gases Remove NOx from motor vehicular exhaust Tax emissions of SO2 Fig. 19-10, p. 452

  40. INDOOR AIR POLLUTION • Indoor air pollution usually is a greater threat to human health than outdoor air pollution. • According to the EPA, the four most dangerous indoor air pollutants in developed countries are: • Tobacco smoke. • Formaldehyde. • Radioactive radon-222 gas. • Very small fine and ultrafine particles.

  41. Para-dichlorobenzene Chloroform Tetrachloroethylene Formaldehyde 1, 1, 1- Trichloroethane Styrene Nitrogen Oxides Benzo-a-pyrene Particulates Tobacco Smoke Radon-222 Asbestos Carbon Monoxide Methylene Chloride Fig. 19-11, p. 453

  42. INDOOR AIR POLLUTION • Household dust mites that feed on human skin and dust, live in materials such as bedding and furniture fabrics. • Can cause asthma attacks and allergic reactions in some people. Figure 19-12

  43. Case Study: Radioactive Radon • Radon-222, a radioactive gas found in some soils and rocks, can seep into some houses and increase the risk of lung cancer. Sources and paths of entry for indoor radon-222 gas. Figure 19-13

  44. Outlet vents for furnaces and dryers Open window Openings around pipes Cracks in wall Slab joints Wood stove Cracks in floor Clothes dryer Sump pump Furnace Slab Radon-222 gas Uranium-238 Soil Fig. 19-13, p. 454

  45. HEALTH EFFECTS OF AIR POLLUTION • Your respiratory system can help protect you from air pollution, but some air pollutants can overcome these defenses. Figure 19-14

  46. Epithelial cell Cilia Goblet cell (secreting mucus) Nasal cavity Oral cavity Pharynx (throat) Mucus Trachea (windpipe) Bronchioles Bronchus Alveolar duct Right lung Alveoli Alveolar sac (sectioned) Bronchioles Fig. 19-14, p. 455

  47. HEALTH EFFECTS OF AIR POLLUTION Normal human lungs (left) and the lungs of a person who died of emphysema (right). Figure 19-15

  48. Air Pollution is a Big Killer • Each year, air pollution prematurely kills about 3 million people, mostly from indoor air pollution in developing countries. • In the U.S., the EPA estimates that annual deaths related to indoor and outdoor air pollution range from 150,000 to 350,000. • According to the EPA, each year more than 125,000 Americans get cancer from breathing diesel fumes.

  49. Air Pollution is a Big Killer • Spatial distribution of premature deaths from air pollution in the United States. Figure 19-16

  50. PREVENTING AND REDUCING AIR POLLUTION • The Clean Air Acts in the United States have greatly reduced outdoor air pollution from six major pollutants: • Carbon monoxide • Nitrogen oxides • Sulfur dioxides • Suspended particulate matter (less than PM-10)

More Related