1 / 11

Understanding Normal Distribution and Probabilities

Learn how to calculate probabilities with normal distributions using z-scores and standard deviations. Discover how to find areas under the curve and interpret percentiles in real-life scenarios.

wtorres
Download Presentation

Understanding Normal Distribution and Probabilities

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Section 5.3 Normal Distributions Finding Probabilities

  2. Probabilities and Normal Distributions If a random variable, x is normally distributed, the probability that x will fall within an interval is equal to the area under the curve in the interval. IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. Find the probability that a person selected at random will have an IQ score less than 115. 100 115 To find the area in this interval, first find the standard score equivalent to x = 115.

  3. Probabilities and Normal Distributions Normal Distribution Find P(x < 115). 100 115 Standard Normal Distribution SAME SAME Find P(z < 1). 1 0 P(z < 1) = 0.8413, so P(x <115) = 0.8413

  4. Application Normal Distribution Monthly utility bills in a certain city are normally distributed with a mean of $100 and a standard deviation of $12. A utility bill is randomly selected. Find the probability it is between $80 and $115. P(80 < x < 115) P(–1.67 < z < 1.25) 0.8944 – 0.0475 = 0.8469 The probability a utility bill is between $80 and $115 is 0.8469.

  5. From Areas to z-Scores Find the z-score corresponding to a cumulative area of 0.9803. z = 2.06 corresponds roughly to the 98th percentile. 0.9803 –4 –3 –2 –1 0 1 2 3 4 z Locate 0.9803 in the area portion of the table. Read the values at the beginning of the corresponding row and at the top of the column. The z-score is 2.06.

  6. Finding z-Scores from Areas Find the z-score corresponding to the 90th percentile. .90 z 0 The closest table area is .8997. The row heading is 1.2 and column heading is .08. This corresponds to z = 1.28. A z-score of 1.28 corresponds to the 90th percentile.

  7. Finding z-Scores from Areas Find the z-score with an area of .60 falling to its right. .40 .60 z 0 z With .60 to the right, cumulative area is .40. The closest area is .4013. The row heading is 0.2 and column heading is .05. The z-score is 0.25. A z-score of 0.25 has an area of .60 to its right. It also corresponds to the 40th percentile

  8. 0 Finding z-Scores from Areas Find the z-score such that 45% of the area under the curve falls between –z and z. .275 .275 .45 –z z The area remaining in the tails is .55. Half this area is in each tail, so since .55/2 = .275 is the cumulative area for the negative z value and .275 + .45 = .725 is the cumulative area for the positive z. The closest table area is .2743 and the z-score is 0.60. The positive z score is 0.60.

  9. From z-Scores to Raw Scores To find the data value, x when given a standard score, z: The test scores for a civil service exam are normally distributed with a mean of 152 and a standard deviation of 7. Find the test score for a person with a standard score of: (a) 2.33 (b) –1.75 (c) 0 (a) x = 152 + (2.33)(7) = 168.31 (b) x = 152 + (–1.75)(7) = 139.75 (c) x = 152 + (0)(7) = 152

  10. Finding Percentiles or Cut-off Values Monthly utility bills in a certain city are normally distributed with a mean of $100 and a standard deviation of $12. What is the smallest utility bill that can be in the top 10% of the bills? $115.36 is the smallest value for the top 10%. 90% 10% z Find the cumulative area in the table that is closest to 0.9000 (the 90th percentile.) The area 0.8997 corresponds to a z-score of 1.28. To find the corresponding x-value, use x = 100 + 1.28(12) = 115.36.

  11. Homework : 1-37 (odd) pgs. 242-243 42-46 even pgs.243-244. Day 2:Homework : 2-36 (even) pgs. 242-243 41-45 odd pgs.243-244.

More Related