1 / 20

PRESENTATION 9 Ratios and Proportions

Learn the fundamentals of ratios and proportions, with explanations, examples, and practical problems. Understand direct and inverse proportions through step-by-step solutions.

wtroy
Download Presentation

PRESENTATION 9 Ratios and Proportions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PRESENTATION 9Ratios and Proportions

  2. RATIOS • A ratio is the comparison of two like quantities • The terms of a ratio must be compared in the order in which they are given • Terms must be expressed in the same units • The first term is the numerator of a fraction, and the second term is the denominator • A ratio should be expressed in lowest fractional terms

  3. RATIOS • Ratios are expressed in two ways: • With a colon between the terms, such as 4 : 9 • This is read as “4 to 9” • With a division sign separating the two numbers, such as 4 ÷ 9 or

  4. RATIOS • Example: Express 5 to 15 as a ratio in lowest terms • Write the ratio as a fraction and reduce • The ratio is 1 : 3

  5. RATIOS • Example: Express 10 to as a ratio in lowest terms • Divide • The ratio is 12 : 1

  6. PROPORTIONS • A proportion is an expression that states the equality of two ratios • Proportions are expressed in two ways • As 3 : 4 = 6 : 8, which is read as “3 is to 4 as 6 is to 8” • As , which is the equation form

  7. PROPORTIONS • A proportion consists of four terms • The first and fourth terms are called extremes • The second and third terms are called means • In the proportion 3 : 4 = 6 : 8, 3 and 8 are the extremes and 4 and 6 are the means • The product of the means equals the product of the extremes (if the terms are cross-multiplied, their products are equal)

  8. PROPORTIONS • Example: Solve the proportion below for F: • Cross multiply: 21.7F = 6.2(9.8) • Divide both sides by 21.7: • Therefore F = 2.8

  9. DIRECT PROPORTIONS • Two quantities are directly proportional if a change in one produces a change in the other in the same direction • When setting up a direct proportion in fractional form: • Numerator of the first ratio must correspond to the numerator of the second ratio • Denominator of the first ratio must correspond to the denominator of the second ratio

  10. DIRECT PROPORTIONS • Example: A machine produces 280 pieces in 3.5 hours. How long does it take to produce 720 pieces? • Analyze: An increase in the number of pieces produced (from 280 to 720) requires an increase in time • Time increases as production increases; therefore, the proportion is direct

  11. DIRECT PROPORTIONS • Set up the proportion and let t represent the time required to produce 720 pieces • The numerator of the first ratio corresponds to the numerator of the second ratio (280 pieces to 3.5 hours) • The denominator of the first ratio corresponds to the denominator of the second ratio (720 pieces to t)

  12. DIRECT PROPORTIONS • Solve for t: • It will take 9 hours to produce 720 pieces

  13. INVERSE PROPORTIONS • Two quantities are inversely or indirectly proportional if a change in one produces a change in the other in the opposite direction • Two quantities are inversely proportional if • An increase in one produces a decrease in the other • A decrease in one produces an increase in the other

  14. INVERSE PROPORTIONS • When setting up an inverse proportion in fractional form: • The numerator of the first ratio must correspond to the denominator of the second ratio • The denominator of the first ratio must correspond to the numerator of the second ratio

  15. INVERSE PROPORTIONS • Example: Five identical machines produce the same parts at the same rate. The 5 machines complete the required number of parts in 1.8 hours. How many hours does it take 3 machines to produce the same number of parts? • Analyze: A decrease in the number of machines (from 5 to 3) requires an increase in time • Time increases as the number of machines decrease and this is an inverse proportion

  16. INVERSE PROPORTIONS • Let x represent the time required by 3 machines to produce the parts • The numerator of the first ratio corresponds to the denominator of the second ratio; 5 machines corresponds to 1.8 hours • The denominator of the first ratio corresponds to the numerator of the second ratio; 3 machines corresponds to x

  17. INVERSE PROPORTIONS • Solve for x: • It will take 3 hours

  18. PRACTICAL PROBLEMS • A piece of lumber 2.8 meters long weighs 24.5 kilograms • A piece 0.8 meters long is cut from the 2.8-meter length • Determine the weight of the 0.8-meter piece

  19. PRACTICAL PROBLEMS • Analyze: Since the weight of 0.8 meters is less than the total weight of the piece of lumber, this is a direct proportion • Set up the proportion and let x represent the weight of the 0.8-meter piece

  20. PRACTICAL PROBLEMS • Solve for x: • The piece of lumber weighs 7 kilograms

More Related