180 likes | 368 Views
G Solvation. Continuum Electrostatics. r = 1-5. G Solvation. H. H. N. H. r = 78.54. sol G = sol G VdW + sol G cav + sol G elec sol G VdW = solute-solvent Van der Waals sol G cav = work to create cavity in solvent = surface tension x surface area
E N D
G Solvation Continuum Electrostatics
r= 1-5 G Solvation H H N H r= 78.54 • solG = solGVdW + solGcav + solGelec • solGVdW = solute-solvent Van der Waals • solGcav = work to create cavity in solvent • = surface tension x surface area • Entropy penalty for rearrangement of water molecules • Evaluate from a series of alkanes
G Solvation • solGelec = difference in electrostatic work necessary to charge ion: • solGelec = NA wsoln – NA wgas • Work to transfer ion from vacuum to solution with the same electrostatic potential Work = solGelec = 0Zie i dqi • i=electrostatic potential for ion i and its ionic atmosphere of neighbors j
uniform dielectric rij 0 qi qj i(r) Electrostatic Potential • r = relative dielectric constant • r = 78.54 for water (attenuates interaction)
+ + - + + uniform solvent dielectric + pj(r) - - - - - - - - - r qi qj rD Screening caused by ionic atmosphere • pj(r) dr = probability of finding an ion j at r to r+dr • rmp = rD= Debye length • thickness of ionic atmosphere
+ + - + + uniform solvent dielectric + pj(r) - - - - - - - - - r qi qj rD Boltzmann distribution • thermal jostling • collisions disrupt ionic halo Noj = number of ions j in volume V k = R/NA
i(r) 2i higher r Poisson Equation • Non-electrolyte Solutions or Dilute Solution Limit for Electrolyte Solutions • i(r)= qi pi(r) = charge density • i(r)= charge per unit volume (r) • (r) =or(r)
Poisson Equation– Spherical Ion • the higher the charge density the faster the potential drops i i r j j i j j i j
Screened Coulomb Potential • Point charges, uniform solvent dielectric • (r) = ro • qj = zj e
+ + - + + uniform solvent dielectric + pj(r) - - - - - - - - - r qi qj rD Screened Coulomb Potential • Point charges, uniform solvent dielectric
2 4 π e å c = - 2 ( x ) z - sinh u ( x ) δ ( x x ) + ε ( x ) u ( x ) Ñ × Ñ κ kT i i i Poisson-Boltzmann Equation • Continuum Electrostatics with Background Electrolyte *N. A. Baker
2 4 π e å c - 2 ( x ) z - sinh u ( x ) δ ( x x ) ε ( x ) u ( x ) Ñ × Ñ κ kT i i i Poisson-Boltzmann Equation = + *N. A. Baker
2 = ( x ) u ( x ) + κ 2 4 π e å c - z - δ ( x x ) ε ( x ) u ( x ) Ñ × Ñ kT i i i Poisson-Boltzmann Equation • Linearized
Electrostatic potential of the 30S ribosomal subunit Top: face which contacts 50S subunit http://agave.wustl.edu/apbs/images/images/30S-canonical.html
Web links • http://ashtoret.tau.ac.il/Homepage/courses/Poisson-Boltzmann.pdf • http://www.biophysics.org/btol/img/Gilson.M.pdf • Nathan A. Baker; http://www.npaci.edu/ahm2002/ahm_ppt/Parallel_methods_cellular.ppt • Jeffry D. Madura; http://www.ccbb.pitt.edu/BBSI/6-11_class_jm.pdf
2 4 π e å = - 2 - Ñ × Ñ c κ ( x ) sinh u ( x ) z δ ( x x ) + ε ( x ) u ( x ) i i kT i = u ( x ) g ( x ) Î ¶ W Î ¶ W x x 2 4 πe å - Ñ × Ñ + = - 2 c ε ( x ) u ( x ) κ ( x ) u ( x ) z δ ( x x ) i i kT i - Linearized Poisson Boltzmann equation also useful: - Free energies and forces obtained from integrals of u