150 likes | 277 Views
Backgrounds for feature extraction. Se- Hoon Park. 26 th August 2014. Table of contents. Edge detection -> Canny edge detector A combined corner and edge detector . C Harris , M Stephens - Alvey vision conference, 1988 (citation : 9984)
E N D
Backgrounds for feature extraction Se-Hoon Park 26th August 2014
Table of contents • Edge detection -> Canny edge detector • A combined corner and edge detector.C Harris, M Stephens - Alvey vision conference, 1988 (citation : 9984) • Corner detection -> Harris corner detector • A computational approach to edge detection • J Canny - Pattern Analysis and Machine Intelligence, IEEE, 1986 (citation:19512)
Edge detection -> Canny edge detector • Corner detection -> Harris corner detector
Canny edge ● ○ ○ ○ ○ Sobel filtering X , Y = *I, = * I I : intensity of image : :
Canny edge ● ● ○ ○ ○ Sobel filtering Magnitude of gradient :
Canny edge ● ● ● ○ ○ Sobel filtering
Canny edge ● ●● ● ○ Direction of gradient y x Non – maximum suppression Magnitude of gradient Direction of gradient Suppression 수행 후 Suppression 수행 전
Canny edge ● ●● ● ● Double thresholding Strong edge noise Weak edge Double threshold 수행 전 Double threshold 수행 후 Edge tracking by hysteresis
Edge detection -> Canny edge detector • Corner detection -> Harris corner detector
Harris corner ● ○ ○ ○ ○ Canny edge ● ●● ● ● What is corner? “flat” no change in all direction “edge” no change along the edge direction “corner” significant change in all directions
Harris corner ●● ○ ○ ○ Canny edge ● ●● ● ● , : x, y 방향 gradient , 1차 테일러 근사 , ] ,
Harris corner ●●● ○ ○ Canny edge ● ●● ● ● : eigenvalues of Harris corner detection
Harris corner ●●● ● ○ Canny edge ● ●● ● ● properties Rotation invariance Partial intensity invariance
Harris corner ●●● ● ● Canny edge ● ●● ● ● Problem Non-invariant image scale ● Lowe, D.G., "Distinctive image features from scale-invariant keypoints", IJCV 2004.1
Harris corner ●●● ● ● Canny edge ● ●● ● ● Scale space Scale invariance 영상의 특징 점이 scale 축을 따라서 반복 검출될 경우, scale invariant한 특징 점이 된다. SIFT의 경우 스케일 축을 따라서도 Laplacian이 극대, 극소가 되는 점들이 scale invariant 특징 점.