1 / 49

SOIR Instrument description and data calibration

SOIR Instrument description and data calibration. A.C. Vandaele, R. Drummond, A. Mahieux, S. Robert, V. Wilquet SOIR Team @ Belgian Institute for Space Aeronomy (IASB-BIRA). Overview. Venus Characteristics Atmosphere Venus Express SOIR Solar occultation Instrument description Telemetry

Download Presentation

SOIR Instrument description and data calibration

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SOIRInstrument description and data calibration A.C. Vandaele, R. Drummond, A. Mahieux, S. Robert, V. Wilquet SOIR Team @ Belgian Institute for Space Aeronomy (IASB-BIRA)

  2. Overview • Venus • Characteristics • Atmosphere • Venus Express • SOIR • Solar occultation • Instrument description • Telemetry • Calibrations • Echelle grating • AOTF • Detector • Optics • Spectrum construction • Geometry

  3. Overview • Venus • Characteristics • Atmosphere • Venus Express • SOIR • Solar occultation • Instrument description • Telemetry • Calibrations • Echelle grating • AOTF • Detector • Optics • Spectrum construction • Geometry

  4. The Venus orbit Credits: Celestia

  5. Venus : Characteristics Venus 6051.8 km (0.95) 4.87 1024 kg (0.82) -243 days 224.65 days 177.3° 0.723 AU 730 K (457°C) 92 atm Earth 6371.0 km (1.00) 5.97 1024 kg (1.00) 1 day 365.15 days 23.44° 1 AU 287 K (14°C) 1 atm Characteristics Radius Mass Sidereal day Year duration Axis inclination Distance to the Sun Surface temperature Surface pressure

  6. Venus : Atmosphere subdivisions • Troposphere • Poorly known region • High temperatures and pressures • Low wind • Cloud layer • Aerosols H2SO4 • Wind ~ 300 km/h retrograde • Mesosphere • Transition zone • Aerosol haze • Thermosphere • Large differences between day and night • Temperature  chemistry • Subsolar – antisolar circulation • Region studied by SOIR

  7. Venus : Atmospheric composition • Main compound: carbon dioxide CO2 • 96.5 % up to ~110 km • Uniform • Transformed by solar UV into CO (> 110 km) • Quantity decreases with altitude, replaced by CO and O • Little water • Variable quantity • HDO/H2O fraction 140 x larger than on Earth • H2SO4 in the regions close to the cloud layer • products SO2, SO, OCS, H2CO • Halogens • HCl, HF

  8. Overview • Venus • Characteristics • Atmosphere • Venus Express • SOIR • Solar occultation • Instrument description • Telemetry • Calibrations • Echelle grating • AOTF • Detector • Optics • Spectrum construction • Geometry

  9. Venus Express: Mission description N • Launched from Baïkonour in November 2005 • Reached Venus in May 2006 • Apoapsis • North pole • Distance ~ 250 km • Periapsis • South pole • Distance ~ 65 000 km • Already two mission extensions • Should end in December 2012 • Maybe until 2014? Sun

  10. Venus Express: Payload • 7 instruments • ASPERA • MAG • PFC • SPICAV/SOIR • VeRA • VIRTIS • VMC Credits: European Space Agency

  11. Overview • Venus • Characteristics • Atmosphere • Venus Express • SOIR • Solar occultation • Instrument description • Telemetry • Calibrations • Echelle grating • AOTF • Detector • Optics • Spectrum construction • Geometry

  12. SOIR: Solar occultation - Animation Credits: Celestia

  13. SOIR: solar occultation – Measurement principle Orbit 232 – Order 129 Transmittance Side view To Sun VEX N View from Venus Express Venus Atmosphere

  14. SOIR: solar occultation – Measurement principle Orbit 232 – Order 129 Transmittance Side view To Sun VEX N View from Venus Express Venus Atmosphere

  15. HDO H2O CO2 CO SOIR: Solar occultation – Example of measured spectra • 4 different diffraction orders measured during each occultation Orbit 486 (20070820)

  16. SOIR: Solar occultations – Measurements map

  17. Overview • Venus • Characteristics • Atmosphere • Venus Express • SOIR • Solar occultation • Instrument description • Telemetry • Calibrations • Echelle grating • AOTF • Detector • Optics • Spectrum construction • Geometry

  18. SOIR: Optical description (1) Credits: IASB/BIRA

  19. Acousto-optic filter Echelle grating 250 µm Crystal Reflective surfaces Infrared detector Spatial direction: 256 pixels Spectral direction: 320 pixels SOIR: Optical description (2)

  20. Overview • Venus • Characteristics • Atmosphere • Venus Express • SOIR • Solar occultation • Instrument description • Telemetry • Calibrations • Echelle grating • AOTF • Detector • Optics • Spectrum construction • Geometry

  21. Spatial Spectral SOIR telemetry – Constraints on the combination of detector lines • Telemetry = equivalent of 8 spectra/second • If 4 orders/second  2 spectra/order = 2 ‘bins’ Detector: 320 x 256 pixels 32 illuminated rows

  22. Slit position during an occultation Spatial Spectral Bin 1 Bin 2 60 km 60 Venus

  23. Overview • Venus • Characteristics • Atmosphere • Venus Express • SOIR • Solar occultation • Instrument description • Telemetry • Calibrations • Echelle grating • AOTF • Detector • Optics • Spectrum construction • Geometry

  24. SOIR: Calibrations • Need to obtain different calibrations • In flight calibration of almost all characteristics • Echelle grating • Blaze function • Acousto-optic filter • Transfer function • Tuning relation wavenumber – acousto-optic frequency • Detector • Non-uniformity of the detector pixels • Pixel to wavenumber relation • Sample interval • Instrument • Sensitivity • Resolution • Signal to noise ratio

  25. Echelle grating: Blaze function (1) • The efficiency of the grating in terms of refracted angle • Is maximum when the refracted angle = incident angle Pyo, Tae-Soo. 2003. Blaze Function and the Groove Shadowing Effect.

  26. Diffraction order Echelle grating: Blaze function (2) Mahieux, A. et al, 2008. In-flight performance and calibration of SPICAV/SOIR on-board Venus Express. Applied Optics, 47(13), 2252–65.

  27. Acousto Optical Tunable Filter: Characteristics • Calibrations: • 1. AOTF bandpass function • TAOTF = f(l, l0, DlFWHM) • 2. Tuning function • l0 = f(RF) • 3. Bandwidth • DlFWHM = f(l) Mahieux, A. et al, 2008. In-flight performance and calibration of SPICAV/SOIR on-board Venus Express. Applied Optics, 47(13), 2252–65.

  28. Acousto Optical Tunable Filter: Characteristics –Bandpass function (1) • Usual transfer function for AOTF • Calibration using miniscans • Using deed solar lines (from Hase et al. 2009) • Radiofrequency of AOTF chosen to correspond to well defined solar lines • Different frequency steps (1 kHz to 20 kHz) around that RF • Lots of miniscans for a lot of different solar lines over the entire spectral range covered by SOIR • Performed routinely to follow aging of the crystal Mahieux, A. et al. 2009. A New Method for Determining the transfer function of an Acousto Optical Tunable Filter. Optics Express, 17, 2005–2014.

  29. A B Acousto Optical Tunable Filter: Characteristics –Bandpass function (2) One solar line @ 2948.7 cm-1 Mahieux, A. et al. 2009. A New Method for Determining the transfer function of an Acousto Optical Tunable Filter. Optics Express, 17, 2005–2014.

  30. Acousto Optical Tunable Filter: Characteristics –Bandpass function (3) • Sum of 5 sinc2 • With all parameters varying linearly with n • = Ii, n0i(i≠0), FWHMi Mahieux, A. et al. 2009. A New Method for Determining the transfer function of an Acousto Optical Tunable Filter. Optics Express, 17, 2005–2014.

  31. Acousto Optical Tunable Filter: Characteristics –Tuning function • Tuning function • Relation between the radiofrequency applied to the crystal and the central wavenumber of the filtered spectral interval • By-product of the previous analysis • Different for the different bins • Different parts of the crystal Mahieux, A. et al, 2008. In-flight performance and calibration of SPICAV/SOIR on-board Venus Express. Applied Optics, 47(13), 2252–65.

  32. Acousto Optical Tunable Filter: Characteristics – Order width vs. AOTF FWHM

  33. Detector: Flat field (1) • Pixel-to-pixel non-uniformity • Obtained: • In the laboratory: by illuminating the detector directly, without passing through the spectrometer, with an homogeneous light source; repeated with different exposure times • In-flight : • Select orders (32) with (almost) no Solar lines (T>0.95) • Large number of repeated observations • High-pass filtering to remove the effect of AOTF, spectrometer, optics… • Depends on • The binning scenario (2x12, 2x16, …) • From bin to bin • Time

  34. Detector: Flat field (2)

  35. Detector: Sample interval

  36. Instrumental Wavenumber calibration • Use of Solar lines in a lot of distinct orders • Correction for Doppler satellite (rec) – Sun (em) • Pixel – wavenumber – order relation • Wavenumber to pixel relation:

  37. Instrumental Spectral Sensitivity (1) • Spectral dependence of the whole instrument as a function of the incoming light wavelength • Obtained from direct Sun measurements, fullscan observations

  38. Instrumental Line Shape (ILS) (1) • From Solar lines and/or Atmospheric lines

  39. Instrumental Line Shape (ILS) (2)

  40. Instrumental Signal to Noise ratio (1) • From transmittance corresponding to high altitude (no absorption)

  41. Instrumental Signal to Noise ratio (2)

  42. Overview • Venus • Characteristics • Atmosphere • Venus Express • SOIR • Solar occultation • Instrument description • Telemetry • Calibrations • Echelle grating • AOTF • Detector • Optics • Spectrum construction • Geometry

  43. Measured spectrum SPICAV/SOIR instrument description:Measurement principles – diffraction order addition • AOTF transfer function: sinc² like • AOTF transfer function shape determination is critical • 7 diffraction orders have to be taken into account to correctly reconstruct measurement spectra AOTF transfer function Central order Mahieux, A. et al, 2008. In-flight performance and calibration of SPICAV/SOIR on-board Venus Express. Applied Optics, 47(13), 2252–65.

  44. Overview • Venus • Characteristics • Atmosphere • Venus Express • SOIR • Solar occultation • Instrument description • Telemetry • Calibrations • Echelle grating • AOTF • Detector • Optics • Spectrum construction • Geometry

  45. Geometry: The onion peeling approach

  46. Geometry – Tangent altitude calculation (1) • The instrument points to the Sun • Pointing direction displaced of 10’ above the centre of the Sun • Account for diffraction

  47. Geometry – Tangent altitude calculation (2) • Size of the slit is 30’ x 2’ (spectral x spatial) • VEX is inertial pointing  rotation of the slit

  48. Geometry – Tangent altitude calculation (3) • Use of SPICE to calculate the tangent altitude • From reconstructed kernels delivered by ESOC • Pointing angle for one bin of the slit: • Tangent altitude:

  49. Thank you for your attention

More Related