1 / 7

5.5.7 Noise analysis of a CE amplifier

v bt. r b. B. C. h fe i p. i p. i o. i csh. r p. r o. v st. i bf. i bsh. E. R S. v ct. v et. v s. R E. R C. 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design . 5.5.7. Example circuit. 5.5.7 Noise analysis of a CE amplifier. V CC. R C. R S. v s. R E.

xandy
Download Presentation

5.5.7 Noise analysis of a CE amplifier

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. vbt rb B C hfe ip ip io icsh rp ro vst ibf ibsh E RS vct vet vs RE RC 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit 5.5.7 Noise analysis of a CE amplifier VCC RC RS vs RE VBB ro

  2. ? vn s 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • Our final aim is to find and minimize the total input noise vn s. vbt rb B C hfe ip ip io icsh rp vst ibf ibsh E RS vet vct vs RE RC • Let us first find vn s by applying superposition.

  3. io vs AOL 1+AOLb As =Gs + Gs bs fwd ___ _______ -hfe 1+hfe RE/(RE +RS+rb+rp) 1 RS+rb+rp+RE As= +0 ____________________ ___________ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • 1) Signal gain As for vs, vst, vbt, and vet. vbt rb B C hfe ip ip io rp vst E RS vet vs RE RC

  4. io ibf AOL 1+AOLb Abf =Gbf + Gbf bbf fwd ___ _______ RS+rb+RE RS+rb+RE +rp hfe 1+hfe RE/(RE +RS+rb+rp) Abf= +0 ____________________ ___________ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • 2) Noise gain Abf for ibf and ibsh. rb B C hfe ip ip io rp ibf ibsh E RS vs RE RC

  5. io icsh AOL 1+AOLb Acsh =Gcsh + Gcsh bcsh fwd ___ _______ hfe 1+hfe RE/(RE +RS+rb+rp) RE RE +RS+rb+rp Acsh= -1 ____________________ - ___________ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • 3) Noise gain Acsh for icsh. rb B C hfe ip ip io icsh rp E RS vs RE RC

  6. io vct Act =Dct ___ 1 RC Act= - ___ 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • 4) Noise gain Act for vct. rb B C hfe ip ip rp E RS io vs vct /RC RE RC

  7. vn s (ibf +ibsh)Abf As icsh Acsh As vct Act As vn s(t) = vst +vbt +vet + + + __________ _______ _____ (RSbE+rp)2 hfe2 1 RC As2 +icsh2 + 4kT ________ _____ vn s2(f) = 4kTRSbE+(ibf 2+ibsh2)RSbE2 0 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit • 5) Total input noise vs. time, vn s. rb B C hfe ip ip io icsh rp RS ibf ibsh E vs RE RC RSbE =RS +rb+RE

More Related