170 likes | 312 Views
The Equilibrium Properties of the Polarized Dipolar Fermi Gases. 报告人:张静宁 导师:易俗. Outline: Polarized Dipolar Fermi Gases. Motivation and model Methods Hartree-Fock & local density approximation Minimization of the free energy functional Self-consistent field equations Results (normal phase)
E N D
The Equilibrium Properties ofthe Polarized Dipolar Fermi Gases 报告人:张静宁 导师:易俗
Outline: Polarized Dipolar Fermi Gases • Motivation and model • Methods • Hartree-Fock & local density approximation • Minimization of the free energy functional • Self-consistent field equations • Results (normal phase) • Zero-temperature • Finite-temperature • Summary
Model • Physical System • Fermionic Polar Molecules (40K87Rb) • Spin polarized • Electric dipole moment polarized • Normal Phase • Second-quantized Hamiltonian
Dipole-dipole Interaction • Polarized dipoles (long-range & anisotropic) • Tunability • Fourier Transform
z x y Containers • Box: homogenous case • Harmonic potential: trapped case Oblate trap: >1 Prolate trap: <1
Energy functional: Preparation • Energy functional • Single-particle reduced density matrix • Two-particle reduced density matrix
zero-temperature finite temperature Wigner distribution function
Free energy functional • Total energy: • Fourier transform • Free energy functional (zero-temperature): • Minimization: The Simulated Annealing Method
Self-consistent field equations: Finite temperature • Independent quasi-particles (HFA) • Fermi-Dirac statistics • Effective potential • Normalization condition
Result: Zero-temperature (1) T. Miyakawa et al., PRA 77, 061603 (2008); T. Sogo et al., NJP 11, 055017 (2009). • Ellipsoidal ansatz
Density distribution Stability boundary Collapse Global collapse Local collapse Result: Zero-temperature (2)
Phase-space deformation Always stretched alone the attractive direction Interaction energy (dir. + exc.) Result: Zero-temperature (3)
Dimensionless dipole-dipole interaction strength Phase-space distribution Phase-space deformation Thermodynamic properties Energy Chemical potential Entropy Specific heat Pressure Result: Finite-temperature & Homogenous
Dimensionless dipole-dipole interaction strength Stability boundary Phase-space deformation Result: Finite-temperature & Trapped
Summary • The anisotropy of dipolar interaction induces deformation in both real and momentum space. • Variational approach works well at zero-temperature when interaction is not too strong, but fails to predict the stability boundary because of the local collapse. • The phase-space distribution is always stretched alone the attractive direction of the dipole-dipole interaction, while the deform is gradually eliminated as the temperature rising.