210 likes | 360 Views
Mrs. Rivas. Mrs. Rivas. Mrs. Rivas. Mrs. Rivas. Mrs. Rivas. Mrs. Rivas. Same-side Interior angles. 103. ( x − 26 ) + x = 180. x − 26 + x = 180. 77. 2x − 26 = 180. 2x = 206. x = 103. 103 + 77 = 180. Mrs. Rivas. Corresponding angles. ( 3x − 5 ) = ( x + 55 ).
E N D
Mrs. Rivas Same-side Interior angles 103 (x − 26) + x = 180 x − 26 + x = 180 77 2x − 26 = 180 2x = 206 x = 103 103 + 77 = 180
Mrs. Rivas Corresponding angles (3x − 5) = (x + 55) 3x − 5 = x + 55 2x − 5 = 55 2x = 60 x = 30 3(30) − 5 = 30 + 55 90 − 5 = 30 + 55 85 = 85
Mrs. Rivas Linear Pair angles = Suppl. (x + 20) + (x + 10) = 180 95 85 x + 20 + x + 10 = 180 2x + 30 = 180 2x = 150 x = 75 95 + 85 = 180
Mrs. Rivas Linear Pair angles = Suppl. (y − 40) + y = 180 110 y − 40 + y = 180 2y − 40 = 180 70 2x = 220 x = 110 110 + 70 = 180
Mrs. Rivas Alternate Exterior angles (2x + 6) = 42 42 2x + 6 = 42 2x = 36 x = 18
Mrs. Rivas Same-side Interior angles (3x − 17) + 98 = 180 82 3x − 17 + 98 = 180 3x + 81 = 180 3x = 99 x = 33 98 + 82 = 180
Mrs. Rivas Same-side Interior angles (2x + 20) + (6x + 24) = 180 54 2x + 20 + 6x + 24 = 180 8x + 44 = 180 126 8x = 136 126 + 54 = 180 x = 17
Mrs. Rivas Alternate Exterior angles 132 (2x + 2) = (3x − 63) 2x + 2 = 3x − 63 2x = 3x − 65 − x = − 65 132 x = 65
Mrs. Rivas Linear Pair angles = Suppl. (5x − 5) + 140 = 180 5x − 5 + 140 = 180 40 5x + 135 = 180 5x = 45 140 + 40 = 180 x = 9
Mrs. Rivas Same-side Interior angles 68 (4x − 8) + 112 = 180 4x − 8 + 112 = 180 4x + 104 = 180 4x = 76 x = 19 112 + 68 = 180
Mrs. Rivas 140 15. 40 Linear Pair angles = Suppl. (7x + 14) + (2x + 4) = 180 7x + 14 + 2x + 4 = 180 140 + 40 = 180 9x + 18 = 180 9x = 162 x = 18
Mrs. Rivas 127 16. 53 Linear Pair angles = Suppl. (4x − 5) + (x + 20) = 180 4x − 5 + x + 20 = 180 127 + 53 = 180 5x + 15 = 180 5x = 165 x = 33
Mrs. Rivas Algebra Determine the value of for which . Then find and . 17. Alternate exterior Angles are
Mrs. Rivas Algebra Determine the value of for which . Then find and . 18. Alternate exterior Angles are
Mrs. Rivas 19. Developing Proof Complete the flow proof below. Given: 1 and 4 are supplementary. Prove: ∠2 and∠3aresupplementary Given Converse of same-side Interior Angles Vertical ∠s are ≅
Mrs. Rivas 20. Developing Proof Complete the flow proof below. Given: and are supplementary; Prove: ∠2 and∠3aresupplementary ∠s suppl. to the same ∠ are ≅ ∠1 ≅∠4 If corr. ∠s are ≅ lines are Give