520 likes | 621 Views
High-Energy Emission from Young and Massive Stellar Objects. Gustavo E. Romero IAR-CONICET romero@iar-conicet.gov.ar. Felix Aharonian’s Workshop November 7 th , 2012. What are the contents of star-forming regions ?.
E N D
High-Energy Emission from Young and Massive Stellar Objects Gustavo E. Romero IAR-CONICET romero@iar-conicet.gov.ar Felix Aharonian’s Workshop November 7th, 2012
What are thecontents of star-formingregions? • Gas (Hayakawa 1952, Morrison 1958, Aharonian & Atoyan 1996). • Young, massivestarswithwindscollectiveeffects(Bykov & Fleishman 1992, Romero & Torres 2003, Torres et al. 2004, Parizot et al. 2004, Bykov: yesterday, etc). • Young pulsars. • SNRs (yesterday’stalks). • Collidingwindbinaries(Eichler & Usov 1993, Benaglia & Romero 2003, Pittard & Daugherty 2006). • Accretingsources(Paredes, Mirabel, Bosch-Ramon – thisworkshop). • FORMING MASSIVE STARS. • RUNAWAY MASSIVE STARS.
Massivestars are formed in massive and dense cores of giant molecular clouds. Thecores are theresult of thegravitationalfragmentation of thecloud Themechanism of massivestarformationisstillmatter of debate. There are twomaindifferentscenarios: accretion and coalescence .
Herbig-Haro objects HH49-50
HH 80-81: a partiallyembeddedmassiveprotostellarsystem Martí, Rodriguez & Reipurth (1993)
Polarization in the jets Carrasco-González, Rodríguez et al. 2010 B = 0.2 mG,
Interactionwiththe ISM Thewholesource (protostar + jets) isembedded in the molecular cloud Araudo, Romero, Bosch-Ramon & Paredes 2007, A&A 476, 1289
SED for HH 80-81 a=100 Bosch Ramon et al. (2010), ncloud = 103/cm3.
Themassiveprotostar IRAS 16547-4247 Southernlobe: S=ctena, a~ -0.6 d=2.9 kpc B~10-3 G Vs~1000 km/s Clear non-thermal emission Rodríguez et al. (2005) VLA
SEDs of non-thermal region at the end of the jet Araudo, Romero, Bosch-Ramon & Paredes 2007, A&A 476, 1289
Case dominatedbyprotons Araudo et al. (2007)
Westerlund 2/ RCW 49 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red)
Westerlund 2/ RCW 49 Aharonian, F.A., et al., 2006
Westerlund 2/ RCW 49 PSR J1022-5746
Westerlund 2/ RCW 49 HESS Coll. Expectedsize of the PWN Size of HESS J1023-575 K&C 1984 Additionalcontributions?
RCW 49 / Westerlund 2 Benaglia et al. 2012
Stellarbow shocks • Arc-shapedfeatures of piled-up material • Samedirection as stellarvelocity • WindsconfinedbyISM rampressure • Distancetostarbymomentum balance • Radiationfromshocked gas heats • sweptdust • Dust re-radiates as MIR and FIR excess
E-BOSS v.1 28 cands(out of 283 OB runawaystarsknown) Peri, Benaglia, et al. 2012, A&A
Modelingbow-schocks and theiremission Relativisticparticles are accelerated at the reverse adiabatic shock in thestellarwind
Most of theprotons escape These p can powerthe extended source del Valle & Romero In prep.
Spectralenergydistributionsfor O4I and O9I stars del Valle & Romero 2012, A&A
Another case: Westerlund 1 HESS Coll.
Another case: Westerlund 1 Seealso poster by Martí et al. onMonoceros
AE AuriageLópez-Santiago, Miceli, del Valle, Romero, et al. ApJ Lett2012 Absorbed X-raypowerlaw ~ -2.5
AE AuriageLópez-Santiago, Miceli, del Valle, Romero, et al. ApJLett 2012 WISE + 1-8 keV EPIC mapEnergymap
VLA + MSX images of BD+43o3654 Benaglia, Romero, et al 2010, A&A C band L band
SED Benaglia, Romero, et al 2010, A&A
zOphbow-shock del Valle & Romero 2012, A&A SED and sensitivities ComputedBS & WISE image
Is HD 195592 a Fermi source?del Valle, Romero, & De Becker 2012
Conclusions • * Protostars in SFRs can be gamma-raysourceswhenembedded in the original molecular core. • * Thetypicalluminosities are ~ 1031-33 erg/s at E>100 MeV. • * Runawaymassivestars can produce relativisticparticles in theirbowshocks, and local (IC) and difusse (pp) gamma-rayemission. • * Somenearbyrunaway O stars can bedetected in gamma-raysby Fermi and in thefutureby CTA. • Gamma-rayastronomy can open a new windowtothestudy of massivestarformingprocesses.
What a world! “Relaxed gamma-rayastronomyteam” Thanks!
Some basic parameters for HH 80-81 • vj ~ 700 km/s • n ~1000 cm-3 • RHH ~ 5 1016 cm • D ~ 1.7 kpc • LX ~ 4 1031 erg/s • Beq ~ 5 mG • E max, p ~ 3 1014 eV - E max, e ~ E max, p/12 See Martí et al. (1993) and Pravdo et al. (2004) for details on the source
HH 80-81: the central source Martí, Rodriguez & Reipurth (1993)
Distributions # Number of stars vs. Spatialvelocity Tetzlaff + 2010 10 20 30 50 70 90 130 Km/s Peri, Benaglia, et al. 2012, A&A
Distributions detected BS Peri, Benaglia, et al. 2012, A&A GC
Energy losses and gains tpp ~2 1012 s >> tesc ~ 3 109 s tBremsstr ~3 1013 s tacc ~ η E/qBc, where η =(8/3)(vs/c)2 tesc = tacc 3 1014 eV (for protons)
Thestar BD+43o3654 IRAS bow shock candidates (Noriega-C. et al. 1997) Comerón & Pasquali 2007: Bow shock at MSX-D, E bands RunawayfromCyg OB2, 1.4 kpc O4 If ; 70 Mo ; 1.6 Myr; [vw = 3200 km/s] Kobulnickyet al. 2010: v~ 80km/s, dM/dt ~ 2 x 10-4 Mo/yr Ambientdensity: 6 to 100 cm-3 A non-thermalemitter?
MSX emission toward BD+430 3654 D-band image (14.65 mm)
VLA obs L-band Benaglia, Romero, et al 2010, A&A C-band
Images Is all emnission coming from the BOW SHOCK? Benaglia, Romero, et al 2010, A&A 5’ ~ 2pc
Spectralindexmap a • S(n) ~ kna • s/n (cont) ≥ 4 • s/n (a) ≥ 10 • -0.8 ≤ a ≤ 0.3. • <a> -0.4 Benaglia, Romero, et al 2010, A&A noise