350 likes | 505 Views
ELEC 5970-001/6970-001(Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits Power Consumption in a CMOS Circuit. Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University
E N D
ELEC 5970-001/6970-001(Fall 2005)Special Topics in Electrical EngineeringLow-Power Design of Electronic CircuitsPower Consumption in a CMOS Circuit Vishwani D. Agrawal James J. Danaher Professor Department of Electrical and Computer Engineering Auburn University http://www.eng.auburn.edu/~vagrawal vagrawal@eng.auburn.edu ELEC5970-001/6970-001 Lecture 2
Class Projects • Study of leakage dynamic power in nanometer devices • Low leakage technologies • Charge recovery and adiabatic switching circuits • Simulation-based power estimation tool • Transistor-sizing for low power • Logic and flip-flop design for low power • Low power clock distribution • Low power arithmetic circuits • Low power memory design • Benchmarking of low power microprocessors • Low power system design ELEC5970-001/6970-001 Lecture 2
Components of Power • Dynamic • Signal transitions • Logic activity • Glitches • Short-circuit • Static • Leakage Ptotal = Pdyn + Pstat Ptran + Psc + Pstat ELEC5970-001/6970-001 Lecture 2
Power of a Transition: Ptran VDD Ron ic(t) vi (t) vo(t) CL R=large Ground ELEC5970-001/6970-001 Lecture 2
Charging of a Capacitor R t = 0 v(t) i(t) C V Charge on capacitor, q(t) = C v(t) Current, i(t) = dq(t)/dt = C dv(t)/dt ELEC5970-001/6970-001 Lecture 2
i(t) = C dv(t)/dt = [V – v(t)] /R dv(t) V – v(t) ─── = ───── dt RC dv(t) dt ∫ ───── = ∫───── V – v(t) RC -t ln [V – v(t)] = ── + A RC Initial condition, t = 0, v(t) = 0 → A = ln V -t v(t) = V [1 – exp(───)] RC ELEC5970-001/6970-001 Lecture 2
-t v(t) = V [1 – exp( ── )] RC dv(t) V -t i(t) = C ─── = ── exp( ── ) dt R RC ELEC5970-001/6970-001 Lecture 2
Total Energy Per Charging Transition from Power Supply ∞∞ V2 -t Etrans = ∫ V i(t) dt = ∫ ── exp( ── ) dt 00 R RC = CV2 ELEC5970-001/6970-001 Lecture 2
Energy Dissipated per Transition in Resistance ∞ V2∞ -2t R ∫ i2(t) dt = R ── ∫ exp( ── ) dt 0 R20 RC 1 = ─ CV2 2 ELEC5970-001/6970-001 Lecture 2
Energy Stored in Charged Capacitor ∞ ∞ -t V -t ∫ v(t) i(t) dt = ∫ V [1-exp( ── )]─ exp( ── ) dt 00 RC R RC 1 = ─ CV2 2 ELEC5970-001/6970-001 Lecture 2
Transition Power • Gate output rising transition • Energy dissipated in pMOS transistor = CV2/2 • Energy stored in capacitor = CV2/2 • Gate output falling transition • Energy dissipated in nMOS transistor = CV2/2 • Energy dissipated per transition = CV2/2 • Power dissipation: Ptrans = Etransα fck = α fck CV2/2 α = activity factor ELEC5970-001/6970-001 Lecture 2
Short Circuit Current, isc(t) VDD VDD - VTp Vi(t) Vo(t) Volt VTn 0 Iscmaxf isc(t) Amp Time (ns) tB tE 1 0 ELEC5970-001/6970-001 Lecture 2
Peak Short Circuit Current • Increases with the size (or gain, β) of transistors • Decreases with load capacitance, CL • Largest when CL= 0 • Reference: M. A. Ortega and J. Figueras, “Short Circuit Power Modeling in Submicron CMOS,” PATMOS’96, Aug. 1996, pp. 147-166. ELEC5970-001/6970-001 Lecture 2
Short-Circuit Energy per Transition • Escf =∫tBtE VDD isc(t)dt = (tE – tB) IscmaxfVDD /2 • Escf = tf (VDD- |VTp|-VTn) Iscmaxf /2 • Escr = tr (VDD- |VTp| -VTn) Iscmaxr /2 • Escf = 0, when VDD = |VTp| + VTn ELEC5970-001/6970-001 Lecture 2
Short-Circuit Energy • Increases with rise and fall times of input • Decreases for larger output load capacitance • Decreases and eventually becomes zero when VDD is scaled down but the threshold voltages are not scaled down ELEC5970-001/6970-001 Lecture 2
Short-Circuit Power Calculation • Assume equal rise and fall times • Model input-output capacitive coupling (Miller capacitance) • Use a spice model for transistors • T. Sakurai and A. Newton, “Alpha-power Law MOSFET model and Its Application to a CMOS Inverter,” IEEE J. Solid State Circuits, vol. 25, April 1990, pp. 584-594. ELEC5970-001/6970-001 Lecture 2
Short Circuit Power Psc = α fck Esc ELEC5970-001/6970-001 Lecture 2
Pscvs. C 0.7μ CMOS 45% Decreasing Input rise time 3ns Psc/Ptotal 0.5ns 0% 35 75 C (fF) ELEC5970-001/6970-001 Lecture 2
Psc, Rise Time and Capacitance VDD Ron ic(t)+isc(t) vi (t) vo(t) CL tr tf R=large vo(t) ─── R↑ Ground ELEC5970-001/6970-001 Lecture 2
isc, Rise Time and Capacitance -t VDD[1- exp(─────)] vo(t) R↓tf (t)C Isc(t) = ──── = ────────────── R↑tf (t) R↑tf (t) ELEC5970-001/6970-001 Lecture 2
iscmax, Rise Time and Capacitance i Small C Large C vo(t) vo(t) iscmax 1 ──── R↑tf (t) t tf ELEC5970-001/6970-001 Lecture 2
Psc, Rise Times, Capacitance • For given input rise and fall times short circuit power decreases as output capacitance increases. • Short circuit power increases with increase of input rise and fall times. • Short circuit power is reduced if output rise and fall times are smaller than the input rise and fall times. ELEC5970-001/6970-001 Lecture 2
Technology Scaling • Scale down by factors of 2 and 4, i.e., model 0.7, 0.35 and 0.17 micron technologies • Constant electric field assumed • Capacitance scaled down by the technology scale down factor ELEC5970-001/6970-001 Lecture 2
Bulk nMOSFET Polysilicon Gate Drain W Source n+ n+ L p-type body (bulk) SiO2 Thickness = tox ELEC5970-001/6970-001 Lecture 2
Scaling Factor, α • Constant electric field • L = L / α • W = W / α • tox = tox / α • VDD = VDD/α • Capacitance → 1/α • Gate delay → 1/α • Area → 1/α2 • Power dissipation → 1/α2 • Power density constant • Doping → α ELEC5970-001/6970-001 Lecture 2
Technology Scaling Results L=0.17μ, C=10fF 70% 60% L=0.35μ, C=20fF Psc/Ptotal 37% 16% 12% L=0.7μ, C=40fF 4% 1% Input tr or tf (ns) 0.4 1.6 ELEC5970-001/6970-001 Lecture 2
Effects of Scaling Down • 1-16% short-circuit power at 0.7 micron • 4-37% at 0.35 micron • 12-60% at 0.17 micron • Reference: S. R. Vemuru and N. Steinberg, “Short Circuit Power Dissipation Estimation for CMOS Logic Gates,” IEEE Trans. on Circuits and Systems I, vol. 41, Nov. 1994, pp. 762-765. ELEC5970-001/6970-001 Lecture 2
Summary: Short-Circuit Power • Short-circuit power is consumed by each transition (increases with input transition time). • Reduction requires that gate output transition should not be faster than the input transition (faster gates can consume more short-circuit power). • Increasing the output load capacitance reduces short-circuit power. • Scaling down of supply voltage with respect to threshold voltages reduces short-circuit power. ELEC5970-001/6970-001 Lecture 2
Components of Power • Dynamic • Signal transitions • Logic activity • Glitches • Short-circuit • Static • Leakage ELEC5970-001/6970-001 Lecture 2
Leakage Power VDD IG Ground R n+ n+ Isub IPT ID IGIDL ELEC5970-001/6970-001 Lecture 2
Leakage Current Components • Subthreshold conduction, Isub • Reverse bias pn junction conduction, ID • Gate induced drain leakage, IGIDL due to tunneling at the gate-drain overlap • Drain source punchthrough, IPT due to short channel and high drain-source voltage • Gate tunneling, IGthrough thin oxide ELEC5970-001/6970-001 Lecture 2
Subthreshold Current Isub = μ0 Cox (W/L) Vt2 exp{(VGS-VTH)/nVt} μ0: carrier surface mobility Cox: gate oxide capacitance per unit area L: channel length W: gate width Vt = kT/q: thermal voltage n: a technology parameter ELEC5970-001/6970-001 Lecture 2
IDSfor Short Channel Device Isub = μ0 Cox (W/L) Vt2 exp{(VGS-VTH+ηVDS)/nVt} VDS = drain to source voltage η: a proportionality factor ELEC5970-001/6970-001 Lecture 2
Increased Subthreshold Leakage Scaled device Ic Log Isub 0 VTH’ VTH Gate voltage ELEC5970-001/6970-001 Lecture 2
Summary: Leakage Power • Leakage power as a fraction of the total power increases as clock frequency drops. Turning supply off in unused parts can save power. • For a gate it is a small fraction of the total power; it can be significant for very large circuits. • Scaling down features requires lowering the threshold voltage, which increases leakage power; roughly doubles with each shrinking. • Multiple-threshold devices are used to reduce leakage power. ELEC5970-001/6970-001 Lecture 2