1 / 37

Chemical Bonds

Chemical Bonds. __________________ = atoms tend to gain, lose or share electrons so as to have 8 electrons. Gain 4 electrons. C would like to N would like to O would like to. Gain 3 electrons. Gain 2 electrons. Electron Dot diagrams are….

xiu
Download Presentation

Chemical Bonds

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chemical Bonds

  2. __________________ = atoms tend to gain, lose or share electrons so as to have 8 electrons Gain 4 electrons • C would like to • N would like to • O would like to Gain 3 electrons Gain 2 electrons

  3. Electron Dot diagrams are… • A way of showing & keeping track of valence electrons. • How to write them? • Write the symbol - it represents the nucleus and inner (core) electrons • Put one dot for each valence electron (8 maximum) • They don’t pair up until they have to (Hund’s rule) X

  4. The Electron Dot diagram for Nitrogen • Nitrogen has 5 valence electrons to show. • First we write the symbol. N • Then add 1 electron at a time to each side. • Now they are forced to pair up. • We have now written the electron dot • diagram for Nitrogen.

  5. Electron Dot Structures Symbols of atoms with dots to represent the valence-shell electrons

  6. Learning Check  A. X would be the electron dot formula for 1) Na 2) K 3) Al   B.  X  would be the electron dot formula  1) B 2) N 3) P

  7. The type of bond can usually be calculated by finding the difference in electronegativity of the two atoms that are going together.

  8. Electronegativity Difference • If the difference in electronegativities is between: • 1.7 to 4.0: Ionic • 0.3 to 1.7: Polar Covalent • 0.0 to 0.3: Non-Polar Covalent • Example: NaCl • Na = 0.8, Cl = 3.0 • Difference is 2.2, so • this is an ionic bond!

  9. Formation of Ions from ________ • Ionic compounds result when metals react with nonmetals • Metals loseelectrons to match the number of valence electrons of their nearest noble gas • Positive ions (cations) form when the number of electrons are less than the number of protons Group 1 metals ion 1+ Group 2 metals ion 2+ • Group 13 metals ion 3+

  10. Formation of Sodium Ion Sodium atom Sodium ion Na  – eNa + e- config: e- config: 11 p+ 11 p+ 11 e- 10 e-

  11. Formation of Magnesium Ion Magnesium atom Magnesium ion  Mg  – 2e Mg2+ e- config:e- config: 12 p+ 12 p+ 12 e- 10 e-

  12. Electron Dots For Cations • Let’s do Scandium, #21 • The electron configuration is: 1s22s22p63s23p64s23d1 • Thus, it can lose 2e- (making it 2+), or lose 3e- (making 3+) Sc = Sc2+ Sc = Sc3+ Scandium (III) ion Scandium (II) ion

  13. Electron Dots For Cations • Let’s do Silver, element #47 • Predicted configuration is: 1s22s22p63s23p64s23d104p65s24d9 • Actual configuration is: 1s22s22p63s23p64s23d104p65s14d10 Ag = Ag1+(can’t lose any more, charges of 3+ or greater are uncommon)

  14. Learning Check A. Number of valence electrons in aluminum 1) 1 e- 2) 2 e- 3) 3 e- B. Change in electrons for octet (Al) 1) lose 3e- 2) gain 3 e- 3) gain 5 e- C. Ionic charge of aluminum 1) 3- 2) 5- 3) 3+ D. 12 p+ and 10 e- 1) 0 2) 2+ 3) 2- E. 50p+ and 46 e- 1) 2+ 2) 4+ 3) 4- F. 15 p+ and 18e- 2) 3+ 2) 3- 3) 5-

  15. Ions from __________ Ions • In ionic compounds, nonmetals in 15, 16, and 17 gain electrons from metals • Nonmetal add electrons to achieve the octet arrangement (forming anions) • Nonmetal ionic charge: 3-, 2-, or 1-

  16. Chloride Ion unpaired electron octet 1 - :Cl + e  :Cl:  e- config: e- config: 17 p+ 17 p+ 17 e- 18 e- ionic charge

  17. ________ Bond • Between atoms of metals and nonmetals with very different electronegativity • Bond formed by transfer of electrons • Produce charged ions in all states. • Conductors and have high melting point. • Examples; NaCl, CaCl2, K2O

  18. Ionic bonding • Its like taking candy from a baby……. • The nonmetal (bullies) take electrons (candy) from the metals (babies)

  19. 1). Ionic bond– electron from Na is transferred to Cl, this causes a charge imbalance in each atom. The Na becomes(Na+) and the Cl becomes(Cl-), charged particles or ions.

  20. Ionic Bonding Lets do an example by combining calcium and phosphorus: • All the electrons must be accounted for, and each atom will have a noble gas configuration (which is stable). Ca P

  21. Ionic Bonding = Ca3P2 Formula Unit This is a chemical formula, which shows the kinds and numbers of atoms in the smallest representative particle of the substance. For an ionic compound, the smallest representative particle is called a: Formula Unit

  22. Properties of Ionic Compounds • ____________ solids - a regular repeating arrangement of ions in the solid: Ions are strongly bonded together. • Structure is rigid. • High melting points • Coordination number- number of ions of opposite charge surrounding it

  23. A. Energy of Bond Formation • Lattice Energy • Energy released when one mole of an ionic crystalline compound is formed from gaseous ions • Greater lattice energy = greater ionic bond C. Johannesson

  24. Do they Conduct? • Conducting electricity means allowing charges to move. • In a solid, the ions are locked in place. • Ionic solids are insulators. • When melted, the ions can move around. • Melted ionic compounds conduct. • NaCl: must get to about 800 ºC. • Dissolved in water, they also conduct (free to move in aqueous solutions)

  25. - Page 198 The ions are free to move when they are molten (or in aqueous solution), and thus they are able to conduct the electric current.

  26. A. Oxidation Number • The charge on an ion. • Indicates the # of e- gained/lost to become stable. 1+ 0 4- 2+ 3+ 4+ 3- 2- 1- (1+ to +3)

  27. B. Ionic _________ • Write the names of both elements, cation first. • Change the anion’s ending to -ide. • Write the names of polyatomic ions. • For ions with variable oxidation #’s, write the ox. # in parentheses using Roman numerals. Overall charge = 0.

  28. Polyatomic Ions • “Many atoms” • A group of covalently-bonded atoms that have a net charge. • They act as a unit as an anion or cation. • You should be able to recognize polyatomic ions in a given chemical formula.

  29. Poly atomic ions • SymbolName • CH3COO1– acetate ion • NH41+ ammonium ion • AsO43– arsenate ion • C6H5COO1– benzoate ion • HCO31– bicarbonate ion • BrO31– bromate ion • CO32– carbonate ion • ClO31– chlorate ion • ClO21– chlorite ion • C6H5O73– citrate ion • CN1– cyanide ion • Cr2O72– dichromate ion • OH1– hydroxide ion • CrO42– chromate ion

  30. Poly atomic ions • C6H5O73– citrate ion • CN1– cyanide ion • Cr2O72– dichromate ion • OH1– hydroxide ion • ClO1– hypochlorite ion • IO31– iodate ion • PO31–phosphite ion • NO31– nitrate ion • NO21– nitrite ion • C2O42– oxalate ion • ClO41– perchlorate ion • MnO41– permanganate ion • PO43– phosphate ion • SiO32– silicate ion • SO42– sulfate ion • SO32– sulfite ion • S2O32– thiosulfate ion

  31. C. Ionic ___________ • Write each ion. Put the cation first. • Overall charge must equal zero. • If charges cancel, just write the symbols. • If not, crisscross the charges to find subscripts. • Use parentheses when more than one polyatomic ion is needed. • Roman numerals indicate the oxidation #.

  32. C. Ionic Formulas • potassium chloride • magnesium nitrate • copper(II) chloride • K+ Cl- • Mg2+ NO3-  • Cu2+ Cl-

  33. C. Ionic Formulas • calcium oxide • aluminum chlorate • iron(III) oxide • Ca2+ O2- • Al3+ ClO3-  • Fe3+ O2-

  34. B. Ionic Names • Write the names of both elements, cation first. • Change the anion’s ending to -ide. • Write the names of polyatomic ions. • For ions with variable oxidation #’s, write the ox. # in parentheses using Roman numerals. Overall charge = 0.

  35. B. Ionic Names • NaBr • Na2CO3 • FeCl3

  36. Ionic hydrates • Ionic Hydrates – ionic compounds that have loosely held water molecules • Example: CuSO4●5H20(s) Formula of raised # of water ionic compound dot molecules • By heating an ionic hydrate, the water molecules are released and the ionic compound becomes “anhydrous” Example: CuSO4 ●5H20(s) + heat CuSO4 (s) (hydrated) (anhydrous) Name: ____________________________________

More Related