1 / 21

Making Fuel from Forages

Making Fuel from Forages. Ryan Lock ( in for the Hawaiian vacationing) Robert Kallenbach Division of Plant Sciences. The epitome of forage based fuels. A more sophisticated model. E3 Biofuels , Shawnee, KS. Biomass Sugar Platform Pre-distillation. Agriculture has some decisions to make.

xuan
Download Presentation

Making Fuel from Forages

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Making Fuel from Forages Ryan Lock (in for the Hawaiian vacationing) Robert Kallenbach Division of Plant Sciences

  2. The epitome of forage based fuels

  3. A more sophisticated model E3 Biofuels, Shawnee, KS

  4. Biomass Sugar PlatformPre-distillation

  5. Agriculture has some decisions to make • Energy independence • Value added crops • Competition for commodities • Interesting times for Price discovery • My background is old school • Cattle/forages/feed CRP acres show promise as a buffer (Average $50/acre, currently)

  6. Remember when…?

  7. For every action…a reaction

  8. Recent Biofuel research at Mizzou • Switchgrass • Cooperative project with 8 other states • Cool-season CRP and CRP renovation with legumes and Switchgrass • Cooperative project with 4 other states Big challenges require teamwork

  9. MU Switchgrass data Latitudinal and Longitudinal Adaptation of Switchgrass Populations M. D. Caslera,*, K. P. Vogelb, C. M. Taliaferroc, N. J. Ehlked, J. D. Berdahle, E. C. Brummerf, R. L. Kallenbachg, C. P. Westh and R. B. Mitchellb • Crop Sci 47:2249-2260 (2007) Take home messages: Not all varieties of switchgrass are created equal A variety should not be grown more than 1 hardiness zone away from its ancestral origin Cave-in-Rock most widely adapted to migration

  10. MU cool-season CRP data Switchgrass dominated warm-season mixture, ND Switchgrass dominated warm-season mixture with legume, KA Tall fescue dominated cool-season mixture with two-cut system, MO Tall wheatgrass dominated cool-season mixture with legume, MT Switchgrass dominated warm-season mixture, OK

  11. MU cool-season CRP data • Yields not tremendous • Next logical step • Integrate Switchgrass to beef up yields • legumes to provide N • Yellow sweetclover • Switchgrass • Binary mixture • w/without glyphosate to establish

  12. Challenges • Production • Mandates • Approx. 16 Billion gallons of ethanol from biomass • At 100 gallons per ton conversion efficiency = 160 Million tons of biomass needed • At an ave. yield of 5 t/a we need 32 million acres • A typical 50 Million gallon/yr plant would need 500,000 tons of cellulosic materials – about 1 million big round bales

  13. Challenges • Transport – about 4 times higher for biomass than grains • Corn 44 lb/ft3 • Biomass 10 to 12 lb/ft3 • Storage - where do you keep 1 million bales without having them deteriorate? • Outside storage helps? • Enough to fill Memorial Stadium level full with bales 5 times

  14. Challenges • Economic benefit to producers – • Current prices for a great deal of biomass greater as forage than fuel • Most cellulosic models built on $35-45/ton feedstock • Higher fuel prices would improve feedstock value • Fertilizer costs for N-P-K • $40/T for cool-season crp • $25/T for switchgrass • Organic matter • losses from removing crop residues • gains under crp w/switchgrass (2.4 and 4 Mg/ha) • N rate dependant (Lee et al., Agron. J. 99:462–468 (2007)).

  15. Challenges • Risk management • Can you hedge these commodities?

  16. Hedging?

  17. Hedging?

  18. Hedging?

  19. Summary • Find 3 million acres to grow corn on • Ensure CRP acres can provide enough cellulosic material • Figure out how to supply CRP with N from legumes

More Related