210 likes | 436 Views
足付き GEM / GEM 付き micromegas. 佐賀大学 大学院工学系研究科物理学専攻 1年 青座 篤史. Good point of GEM. Good point of micromegas. Gain is large. Easy to handle. Danger of damaging RO electronics is a little. Diffusion at the gas amplification is small. Weak point of GEM. Weak point of micromegas.
E N D
足付きGEM/GEM付きmicromegas 佐賀大学 大学院工学系研究科物理学専攻 1年 青座 篤史
Goodpoint of GEM Good point of micromegas • Gain is large • Easy to handle • Danger of damaging • RO electronics is a little. • Diffusion at the gas amplification is small Weak point of GEM Weak point of micromegas • Gain is small • discharge Multi-layer structure Damage to RO electronics. • Diffusion at the gas amplification is large • The frame is necessary The frame becomes a dead space.
GEM+micromegas(足付きGEM) GEM+micromegas • Structure to combine GEM with micromegas gas amplification area The amplification area is kept away from the reading part. amplification area • Gain is large • The danger of the electrical discharge is reduced. • The frame is unnecessary.
Micromegas Pad micromegas 50μm • Operation test in air • There were a lot of electrical discharges in a low potential difference(250V~280V).
Result of electric field calculation by Maxwell3D • It is a high electric field in the place where the insulator is near Pad. • The insulator should be vertical to Pad.
200μm 50μm micromegas The same method as saclay group 15μm 足の形を円柱にしたメッシュのmicromegasをテスト setup Gas:P10:95%、C4H10:5% Fe55 (5.9keV) Pad ED:100[V/cm] 天板 Pad • 3.01cmピッチ(Pad間隔100μm)
Operation test of micromegas(mesh) P10:95%、C4H10:5%で440Vまで印加でき、動作する事は確認できた。
200μm 50μm GEM+micromegas(足付きGEM) 足付きGEM(サイエナジー社製)試作品 10cm×10cm 足の大きさ
6mm Pad 55Fe 0.1mm 1.17mm 3[cm] Operation test Setup Gas:P-10(Ar90%、CH410%) Ed:100[V/cm] ΔVGEM=250[V] Pad~GEM:250[V]
1 2 3 4 Operation test It measures it by using six Pad.
55Fe 3[cm] 1.5cm 1.5cm 1mm Operation test Setup Pad Gas:P-10(Ar90%、CH410%) Ed:100[V/cm] ΔVGEM= 320[V] Pad~GEM:190~240[V]
55Fe Pad~GEM:210V Pad~GEM:190V Pad~GEM:200V Pad~GEM:220V Pad~GEM:240V Pad~GEM:230V
The mixture ratio of the gas was changed. Ar:CH4=90:10 Ar:CH4=95:5 Ar:CH4=50:50 Ar:CH4=80:20 Ar:CH4=70:30 Ar:CH4=60:40 Ar:CH4=40:60 Ar:CH4=30:70 Ar:CH4=20:80 Ar:CH4=0:100
Ed:100[V/cm] ΔVGEM=320[V] Pad~GEM:210[V] Gas:P-10(Ar90%、CH410%) もう1枚の足付きGEM これまでの測定で使っていた足付きGEM resolution:0.13 resolution:0.10 • Result of measurement • 動作することは確認できたが、再現性がない。
Summary • Gain is large was able to be confirmed. • no reproducibility. 詳しくはまだ解っていないが、足付きGEMはmicromegasに比べて構造が厚いため 足付きGEMをフラットにするには静電力が十分ではないようで、空気中で印加した 様子では、読み出しPadに張り付いてフラットになっているようには見えなかった。 今後、この問題を改善したい。
electron ion GATE Question concerning Garfield IONFEEDBACK Feedback losses Avalanche GEMGATE 電子を通すときとは逆の電位差にして イオンをここで止める。 ion
electron Q1 GATE Q2 Question concerning Garfield Q2/Q1ができるだけ1に近くなる セットアップ(ΔVGEM、hole、GAS) を調べる • Garfieldで電子をモンテカルロドリフト • させてQ2/Q1を評価する。
collectionefficiency extractionefficiency step Question concerning Garfield • step size • Interval when position of electron is updated • Step size is specified by the number of collisions and length. • If the steps are too large, the method is inaccurate. • The calculations are stopped if the number of step • reaches the maximum number of steps allowed 1000 • It reaches the maximum number of steps before • the particle reaches the electrode if the step size • is too small.
Question concerning Garfield • Number of collisions • length collection efficiency collection efficiency extraction efficiency extraction efficiency
P-5 Ar‐CO2 70-30 GASEFFECT Measurement by Sauli simulation
φ100μm φ70μm HOLEDIAMETEREFFECT Measurement by Sauli simulation