280 likes | 490 Views
GROESTL HASH FUNCTION. Presented by : Kouajiep Ngongang Landry/ Student ID: 6912095 /email: kanel_landry@yahoo.fr Madhu / Student ID: 9793569/ email:m_gongat@encs.concordia.ca Esaq Ahmed/ Student ID: 9702849 /email: daybright2003@gmail.com
E N D
GROESTL HASHFUNCTION Presented by : KouajiepNgongang Landry/ Student ID: 6912095 /email: kanel_landry@yahoo.fr Madhu / Student ID: 9793569/email:m_gongat@encs.concordia.ca Esaq Ahmed/ Student ID: 9702849 /email:daybright2003@gmail.com Version 1.1 – made for the INSE 6110 course project Concordia University Institute of Information Systems Engineering Montreal, Canada November 2010 {Candidate to the AES competition for the SHA-3 standard }
{ { Encrytion method Infobox (Header) |name=Groestl (General) |designers=Soren Steffen Thomsen, Martin Schlaffer Christian Rechberger Florian Mendel KrystianMatusiewice Lars R. Knudsen Praveen Gauravaram | publish date = July 2009 | series= SHA-3 candidate | derived from = AES | related to = AES (via the permutation and the S-BOX) | certification= second round candidate of the SHA-3 competition } }
1 Message M to hash M 2 f f f Groestl(M) F := compression function := truncation function NOTE: Before we go ahead, remember that Groestl operates on bytes.So we will use the byte notation
Groestl:High Level description Message= M, /*initialization of message blocks and the initial value*/ int l; /*message block length*/ If is_multiple_of_l(sizeof(M)) continue; else M=pad(M); block m[t]=Divide(M) block IV block h1=f(m[1],IV) /*computing Groestl(M)*/ for r = 2 to t hr=f(m[r],hr-1) Endfor Groestl(M)=(ht)
CONTENTS A - Design of A - 1 Design of and A - 2 The four transformations of and A - 2.1 AddRound Constant_ A - 2.2 SubBytes A - 2.3 ShiftBytes/ShiftBytesWide A - 2.4 MixBytes B - Design of C - Padding
A - Design of Built from 2 different fixed permutations P and Q, Iterated t times , where t is the number of block messages The original message M is divided into blocks of equal size , depending on the digest size we want (cf. Fig. 3 for details) Fig.1 : Detailed view of the Groestl compression part
comes into 2 variants: -one is used for short messages digest and indexed 512 -one is used for long messages digest and indexed 1024 Each variant uses its own pair of permutations P and Q: (, ) for short (, ) for long Fig.2.a : Permutations-Block length-state size dependency Digest size 224 00 ... 00 00 e0 256 00 ... 00 01 00 384 00 ... 00 01 80 512 00 ... 00 02 00 Fig.2.b : Digest size-initial value dependency
Groestl - compression function f : High Level description State = X ChainingInput=Y Q(X) Z = XY P(Z) U=Q(X)Y f(X,Y) = P(Z)U
INPUT (Round1) Chaining input(initial value ) message block (initial state in ) -------------------------------- (initial state in )
A - 1 Design of and - based on iterations depending on the digest size Fig.3 : Permutations-Digest size-Number of rounds dependency For each permutation and , we have the following round transformations + AddRound Constant + SubBytes + ShiftBytes (for 8*8 bytes array )/ShiftBytesWide (for 8*16 bytes array) + Mixbytes
A - 2 The four transformations of and Fig. 4: Transformations of and
A - 2.1 AddRoundConstant__________________________________________ • ← ⊕ • adds(exclusive-OR) a round-dependent constantto the state , where is the actual round of the permutation • is reduced modulo 256, if necessary • is specific to the permutations (for P and for Q) • All round constants bytes are zero except for a single position. L and
So, in the round 1 of the transformation of , we will have: = our actual state
A - 2.2 SubBytes____________________________________________________ • substitutes each byte in the state matrix by another value, taken • from the s-box S • ← , depending on the state size 2d (2d)=d8 Groestl s-box
Thus, in this round 1, the SubBytesapplies to our state gives us: = our actual state
A - 2.3 ShiftBytes/ShiftBytesWide_________________________________________ • each row of the block is cyclically shifted positions to the left , • for 8*8 blocks, ={0,1,2,3,4,5,6,7} • for 8*16 blocks, ={0,1,2,3,4,6,11} Hence, Row 0 cyclically shifted (0) position to the left Row 1 cyclically shifted (1) position to the left Row 2 cyclically shifted (2) positions to the left Row 3 cyclically shifted (3) positions to the left Row 4 cyclically shifted (4) positions to the left Row 5 cyclically shifted (5) positions to the left Row 6 cyclically shifted (6) positions to the left Row 7 cyclically shifted (7) positions to the left Likewise for 8*16 blocks; but now, as indicated in above, =11 instead of 7 as in 8*8 blocks
A - 2.4 MixBytes______________________________________________________ • multiplies(modulo multiplication) each column of the current state by a constant 8 × 8 matrix B in ,the Rijndael’s Galois field • state← B × state • The matrix B is defined by: circ(02, 02, 03, 04, 05, 03, 05, 07) matrix B
In this field, the multiplication is not the standard one.It’s a bit more complicated. We reduce the factors to polynomial and to do the multiplication mod 02 d4 Step 1: the polynomial are retrieved according to the decimal represensation d4= 1110 0100 d4 = 02= 0000 0010 02 = 7 6 5 4 3 2 1 0 binary position : Step 2: we do the multiplication mod 02 d4 = [().()] mod = mod = 111001000 mod 100011011 = 11010011 (done through long division using binary notation) = d3
Groestl– permutations P and Q : High Level description State = S for i = 1 to Nr AddRoundConstant(State,CP[i] ) /*respectively AddRoundConstant(State,CQ[i] )*/ SubBytes(State, S-box) ShiftByte(State)or ShiftByteWide(State) MixBytes(State,B) Endfor P(S) = State /* respectively Q(S) = State */
Number of round Nr=10 Short messages digest: () Groestl long messages digest: () • Number of round Nr=14 Groestl variants configuration
B - Design of compute ⊕ and then truncates the output by returning only the last n bits Groestl(M) x 256_trunc(x)
Groestl - truncation function : High Level description State = G n=digest size H=P(State) State=n_trunc(H) finalState=State
C - Padding able to operate on inputs of varying length, a padding function pad is defined takes a string x of length N bits and returns a padded string x∗ = pad(x) of a length which is a multiple of . How?If x= (a1, a2,………,an,0010 00) a 495-bits message (the ai’s are in byte) 1-appends the bit ‘1’ to x x=(a1,a2,………,an,0010 001) 2- appends w = −N − 65 mod ‘0’ bits w= - 495 - 65 mod 512 = 464 so, x= (a1,a2,……….,an,0100 0010,0000 0000,……….,0000 000 ) 3- appends a 64-bit representation of p=(N + w + 65)/ p=(495+464+65)/512 = 2 This number p is an integer due to the choice of w, and it represents the number of message blocks in the final, padded message 464 ‘0’bits
x 2 1 pad(x) 3