670 likes | 874 Views
Part I: broad line spectra. 宽线区离黑洞很近,处于引力与辐射压力的平衡 吸收吸积盘的连续谱. 宽线区光致电离模型的证据. 速度 轮廓 logarithmic F λ (v)~ - ln(v) Blended (如小蓝包) 光变 (宽线区的云块光学厚) 分层结构. Dong et al. 2011. 2796 & 2803. Dong et al. 2011. Doppler broadened FWHM (500~10000km/s with a typical value of 5000km/s)
E N D
Part I: broad line spectra • 宽线区离黑洞很近,处于引力与辐射压力的平衡 • 吸收吸积盘的连续谱
速度 • 轮廓 logarithmic Fλ(v)~ -ln(v) • Blended (如小蓝包) • 光变(宽线区的云块光学厚) • 分层结构
Dong et al. 2011 2796 & 2803
Dong et al. 2011 Doppler broadened FWHM (500~10000km/s with a typical value of 5000km/s) FWZI (full width at zero intensity):true range of line of sight velocity
Assumption: pure hydrogen nebula --Case A: All of the lines are assumed to be optical thin --Case B: Lyman-series lines are all optical thick Reference: Baker & Menzel (1938) Osterbrock (1989) Lya/Hb(obs) = 5-15 (>= 30) Ha/Hb(obs) = 4-6 (~2.8)
Temperature and density More detailed analyses show CIII] to originate in region different from Lyα or CIV emitting region, typical densities can be as high as 1011 cm-3
Location of BLR From light curve: the location of the BLR is several light days from the central BH.
发射线的轮廓(对数轮廓) 径向运动方程 电离平衡方程 质量连续性方程
Covering factor and filling factor • Filling factor: (4/3πl3N)/(4/3πr3) • Covering factor:how much of the continuum is • absorbed by BLR: Ω/4π
Part III: Photoionization of BLR 宽线区分层结构的一个证据
光致电离模型 1 电离连续谱的形状 2 元素丰度(如太阳丰度) 3 云块中的粒子密度(NH) 4 云块的柱密度(源于观测) 5 电离参数 (G. Ferland Cloudy)
斯特龙根深度(Stromgren depth) Q(H) = L/hγ U = Q(H)/(4πr2cne) 单位时间内达到云块上的光子数: AcQ(H)/(4πr2) = AcUcne 单位时间内的复合数: ne2αBVc = AcUcne R = Uc/neαB ~ 0.7Rsun • 平谱扩展的部分光致电离区(PIZ)H+/H0~0.1 • Lyman alpha光子被PIZ区捕获,导致n=2态的氢原子增多Lya/Ha小于caseB的预言
Part IV: Broad line profile 研究线的轮廓的用处
Double peaked emission lines Disk parameters Eracleous, M. 1994 Strateva, I. 2003
BAL Quasars: normal quasars viewed at • angle along the l.o.s. of intervening, fast-moving material • High-ionization (HIBAL): Ly, NV, SiIV, CIV • Low-ionization (LOBAL): AlIII, MgII SDSS BALQSOs from Trump et al. 2006
BAL QSO Outflow: driven by AGN? Gibson, R. 2009
Part V: Reverberation Mapping Peterson B.M. 1993 Rewiew paper
CCF has a peak at the lag for which C(t) and L(t) match bestbased on CCF we can measure the size of BLR NGC5548 Delay:~22days
Also found: • Broadest lines vary fastest • Higher ionization lines vary fastest • BLR has a stratified ionization structure
L—R relation (这个关系非常重要并且被广泛应用)
Final Part: the assumptions and details used in estimating MBH based on mapping technique • Assumption : • the geometry of BLR? • gravitation dominated • Detail – how to measure line width and time lag
geometry of BLR • MBH = f × RV2/G • f is a scale factor of order unity that depends on the structure, kinematics, and inclination of the BLR • BLR as a flared disk? H/R > 0.1 • (2) BLR as a warped disk • (3) A two component BLR: a disk and a wind Collin et al. 2006
gravitation dominated! Peterson et al. 2000