140 likes | 358 Views
BAB. 3. Modul. f. periode. x. 0. 4. 12. 8. Modul. f. periode. periode. 1. x. -. -. 3. 4. 2. 1. 0. 1. 2. 5. 6. 1. 1. 1. f(. ) =. 2. (. ). =. 2. 2. 4. 1. 1. 1. f(. ) = f(. ) = f(. ) =. 1. 2. 1. 1. -. -. 2. 2. 2. 1. 1. 1. 1. f(. ) = f(.
E N D
BAB 3 Modul
f periode x 0 4 12 8 Modul
f periode periode 1 x - - 3 4 2 1 0 1 2 5 6 1 1 1 f( ) = 2 ( ) = 2 2 4 1 1 1 f( ) = f( ) = f( ) = 1 2 1 1 - - 2 2 2 1 1 1 1 f( ) = f( ) = f( ) = 2 2 + 2 2 2 4 1 1 1 1 f( ) = f( ) = f( ) = f( ) = 2 1 4 1 2 $ 2 1 1 - - - 2 2 2 2 1 1 1 f( ) = f( ) = f( ) = 3 1 2 1 1 + 2 2 2 Modul
b sin = a r y T(a, b) r b sin( + 360 0 ) = = sin a a r a + 7 2 0 b 0 a sin( + 720 0 ) = = sin a a + r 3 6 0 a 0 demikianseterusnya. x Modul
Tentukannilaidari: a. sin 390 0 d. sin 765 0 1 b. sin 480 0 e. sin 2 p 2 c. sin 690 0 1 a. sin 390 0 = sin( 30 0 + 360 0 ) = sin 30 0 = 2 1 b. sin 480 0 = sin(120 0 + 360 0 ) = sin 120 0 = 3 2 c. sin 690 0 = sin( 30 0 + 720 0 ) = sin( 30 0 + 2 360 0 ) - - × 1 = sin ( 30 0 ) = sin 30 0 = - - - 2 d. sin 765 0 = sin(45 0 + 720 0 ) = sin(45 0 + 2 360 0 ) × 1 = sin 45 0 = 2 2 1 1 1 e. sin 2 = sin( + 2 ) = sin( ) = 1 p p p p 2 2 2 Modul
Fungsi y = cos x adalah fungsi periodik dengan periode 360 0 . Fungsi y = tan x adalah fungsi periodik dengan periode 180 0 . cos( + k 360 0 ) = cos dengan k = ±1; ±2; ±3; ... a × a 1 a. cos 390 0 = cos( 30 0 + 360 0 ) = cos 30 0 = 3 2 tan( + k 180 0 ) = tan dengan k = ±1; ±2; ±3; ... a × a 1 b. cos 480 0 = cos(120 0 + 360 0 ) = cos 120 0 = - 2 1 c. cos 690 0 = cos( 30 0 + 2 360 0 ) = cos ( 30 0 ) = cos30 0 = 3 - × - 2 d. tan 190 0 = tan( 10 0 + 180 0 ) = tan 10 0 e. tan 480 0 = tan(120 0 + 2 180 0 ) = tan 120 0 = × 3 - 1 f. tan 690 0 = tan( 30 0 + 4 180 0 ) = tan( 30 0 ) = tan30 0 = 3 - × - - - 3 g. tan 765 0 = tan(45 0 + 4 180 0 ) = tan 45 0 = 1 × Modul
Periodefungsitrigonometri 0 3 6 0 Fungsi y = sin nx mempunyai periode = n 0 3 6 0 Fungsi y = cosnxmempunyaiperiode = n 0 3 6 0 a. y = sin 2x mempunyaiperiode = 0 1 8 0 = 2 0 1 8 0 Fungsi y = tan nxmempunyaiperiode = n 0 3 6 0 1 b. y = sin x mempunyai periode = 7 2 0 0 = 2 1 2 0 3 6 0 c. y = sin (3x + 20 0 ) mempunyaiperiode = 0 1 2 0 = 3 0 3 6 0 d. y = cos 4x mempunyai periode = 9 0 0 = 4 0 1 8 0 e. y = tan 3x mempunyaiperiode = 6 0 0 = 3 Modul
, 7 6 5 4 5 , 2 2 0 y 0 5 1 9 1 2 1 , 3 5 5 1 5 7 , 5 0 180 0 0 0 0 270 360 225 315 180 x 360 0 0 0 0 0 90 135 45 5 , 2 3 0 3 2 7 , 5 5 2 3 5 1 2 2 5 , 7 9 4 0 2 2 , 7 5 2 y 1 periode 1 x 0 0 180 0 900 720 0 0 360 540 - 1 Modul
y 0 0 5 6 , 2 7 3 2 3 5 , 1 3 5 4 3 5 5 , 6 2 7 9 , 5 2 0 0 0 180 90 135 0 225 x 0 9 270 0 0 0 360 0 0 315 0 270 45 5 , 2 2 4 1 7 1 , 5 5 2 3 2 1 5 2 5 , 7 0 0 5 2 1 , 8 5 1 y 1 periode 1 x 0 0 900 0 720 0 540 0 360 180 - 1 Modul
y 0 5 9 , 1 7 1 6 2 5 1 , 4 3 5 5 5 1 , 5 2 7 2 , 5 x 180 0 0 0 0 0 0 0 45 0 0 270 360 0 90 180 225 315 135 0 360 5 , 2 3 0 3 2 7 , 5 5 2 3 5 1 2 2 5 , 7 9 4 0 2 2 , 7 5 2 Modul
p 0 360 2 periode = = n n a a Grafikfungsi y = k sin n(x + ) + h Grafikfungsi y = k cos n(x + ) + h a a > 0 < 0 k > 0 k < 0 maksimum maksimum bergeser bergeser = k + h - kekanan = k + h kekiri a a minimum minimum sejauh sejauh = k + h - = k + h Modul
= 2 sin 2(x 10 0 ) + 3 - y = 2 sin (2x 20 0 ) + 3 - 0 3 6 0 Periode = 0 1 8 0 = 2 y Bergeserkekanansejauh 10 0 . 5 1 x 0 0 0 0 0 0 0 0 0 0 0 10 45 55 90 100 135 145 180 190 Modul
y 2 x - 0 120 0 0 0 0 0 0 70 90 20 10 30 40 0 0 0 0 100 60 - 2 Modul