1 / 14

Modul

BAB. 3. Modul. f. periode. x. 0. 4. 12. 8. Modul. f. periode. periode. 1. x. -. -. 3. 4. 2. 1. 0. 1. 2. 5. 6. 1. 1. 1. f(. ) =. 2. (. ). =. 2. 2. 4. 1. 1. 1. f(. ) = f(. ) = f(. ) =. 1. 2. 1. 1. -. -. 2. 2. 2. 1. 1. 1. 1. f(. ) = f(.

yehuda
Download Presentation

Modul

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. BAB 3 Modul

  2. f periode x 0 4 12 8 Modul

  3. f periode periode 1 x - - 3 4 2 1 0 1 2 5 6 1 1 1 f( ) = 2 ( ) = 2 2 4 1 1 1 f( ) = f( ) = f( ) = 1 2 1 1 - - 2 2 2 1 1 1 1 f( ) = f( ) = f( ) = 2 2 + 2 2 2 4 1 1 1 1 f( ) = f( ) = f( ) = f( ) = 2 1 4 1 2 $ 2 1 1 - - - 2 2 2 2 1 1 1 f( ) = f( ) = f( ) = 3 1 2 1 1 + 2 2 2 Modul

  4. b sin = a r y T(a, b) r b sin( + 360 0 ) = = sin a a r a + 7 2 0 b 0 a sin( + 720 0 ) = = sin a a + r 3 6 0 a 0 demikianseterusnya. x Modul

  5. Tentukannilaidari: a. sin 390 0 d. sin 765 0 1 b. sin 480 0 e. sin 2 p 2 c. sin 690 0 1 a. sin 390 0 = sin( 30 0 + 360 0 ) = sin 30 0 = 2 1 b. sin 480 0 = sin(120 0 + 360 0 ) = sin 120 0 = 3 2 c. sin 690 0 = sin( 30 0 + 720 0 ) = sin( 30 0 + 2 360 0 ) - - × 1 = sin ( 30 0 ) = sin 30 0 = - - - 2 d. sin 765 0 = sin(45 0 + 720 0 ) = sin(45 0 + 2 360 0 ) × 1 = sin 45 0 = 2 2 1 1 1 e. sin 2 = sin( + 2 ) = sin( ) = 1 p p p p 2 2 2 Modul

  6. Fungsi y = cos x adalah fungsi periodik dengan periode 360 0 . Fungsi y = tan x adalah fungsi periodik dengan periode 180 0 . cos( + k 360 0 ) = cos dengan k = ±1; ±2; ±3; ... a × a 1 a. cos 390 0 = cos( 30 0 + 360 0 ) = cos 30 0 = 3 2 tan( + k 180 0 ) = tan dengan k = ±1; ±2; ±3; ... a × a 1 b. cos 480 0 = cos(120 0 + 360 0 ) = cos 120 0 = - 2 1 c. cos 690 0 = cos( 30 0 + 2 360 0 ) = cos ( 30 0 ) = cos30 0 = 3 - × - 2 d. tan 190 0 = tan( 10 0 + 180 0 ) = tan 10 0 e. tan 480 0 = tan(120 0 + 2 180 0 ) = tan 120 0 = × 3 - 1 f. tan 690 0 = tan( 30 0 + 4 180 0 ) = tan( 30 0 ) = tan30 0 = 3 - × - - - 3 g. tan 765 0 = tan(45 0 + 4 180 0 ) = tan 45 0 = 1 × Modul

  7. Periodefungsitrigonometri 0 3 6 0 Fungsi y = sin nx mempunyai periode = n 0 3 6 0 Fungsi y = cosnxmempunyaiperiode = n 0 3 6 0 a. y = sin 2x mempunyaiperiode = 0 1 8 0 = 2 0 1 8 0 Fungsi y = tan nxmempunyaiperiode = n 0 3 6 0 1 b. y = sin x mempunyai periode = 7 2 0 0 = 2 1 2 0 3 6 0 c. y = sin (3x + 20 0 ) mempunyaiperiode = 0 1 2 0 = 3 0 3 6 0 d. y = cos 4x mempunyai periode = 9 0 0 = 4 0 1 8 0 e. y = tan 3x mempunyaiperiode = 6 0 0 = 3 Modul

  8. , 7 6 5 4 5 , 2 2 0 y 0 5 1 9 1 2 1 , 3 5 5 1 5 7 , 5 0 180 0 0 0 0 270 360 225 315 180 x 360 0 0 0 0 0 90 135 45 5 , 2 3 0 3 2 7 , 5 5 2 3 5 1 2 2 5 , 7 9 4 0 2 2 , 7 5 2 y 1 periode 1 x 0 0 180 0 900 720 0 0 360 540 - 1 Modul

  9. y 0 0 5 6 , 2 7 3 2 3 5 , 1 3 5 4 3 5 5 , 6 2 7 9 , 5 2 0 0 0 180 90 135 0 225 x 0 9 270 0 0 0 360 0 0 315 0 270 45 5 , 2 2 4 1 7 1 , 5 5 2 3 2 1 5 2 5 , 7 0 0 5 2 1 , 8 5 1 y 1 periode 1 x 0 0 900 0 720 0 540 0 360 180 - 1 Modul

  10. y 0 5 9 , 1 7 1 6 2 5 1 , 4 3 5 5 5 1 , 5 2 7 2 , 5 x 180 0 0 0 0 0 0 0 45 0 0 270 360 0 90 180 225 315 135 0 360 5 , 2 3 0 3 2 7 , 5 5 2 3 5 1 2 2 5 , 7 9 4 0 2 2 , 7 5 2 Modul

  11. p 0 360 2 periode = = n n a a Grafikfungsi y = k sin n(x + ) + h Grafikfungsi y = k cos n(x + ) + h a a > 0 < 0 k > 0 k < 0 maksimum maksimum bergeser bergeser = k + h - kekanan = k + h kekiri a a minimum minimum sejauh sejauh = k + h - = k + h Modul

  12. = 2 sin 2(x 10 0 ) + 3 - y = 2 sin (2x 20 0 ) + 3 - 0 3 6 0 Periode = 0 1 8 0 = 2 y Bergeserkekanansejauh 10 0 . 5 1 x 0 0 0 0 0 0 0 0 0 0 0 10 45 55 90 100 135 145 180 190 Modul

  13. y 2 x - 0 120 0 0 0 0 0 0 70 90 20 10 30 40 0 0 0 0 100 60 - 2 Modul

  14. Modul

More Related