1 / 21

High Resolution Imaging and EUV spectroscopy for RHESSI Microflares

High Resolution Imaging and EUV spectroscopy for RHESSI Microflares. S. Berkebile-Stoiser 1 , P. Gömöry 1,2 , J. Rybák 2 , A.M. Veronig 1 , M. Temmer 1 , P. Sütterlin 3.

yepa
Download Presentation

High Resolution Imaging and EUV spectroscopy for RHESSI Microflares

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High Resolution Imaging and EUV spectroscopy for RHESSI Microflares S. Berkebile-Stoiser1, P. Gömöry1,2, J. Rybák2, A.M. Veronig1, M. Temmer1, P. Sütterlin3 1 IGAM/Institute forPhysics, University of Graz, Austria2 Astronomical Institute, SlovakAcademyofSciences, Slovakia3Institute for Solar Physics, The Royal Swedish Academy of Sciences, Sweden

  2. Microflare observation campaign 2006 Initiators: Jan Rybàk, Peter Gömory (AI/Slovak Academy of Sciences), Astrid Veronig, Manuela Temmer, Sigrid Stoiser, IGAM/Institute of Physics, Uni Graz Campaign Duration: June 28 – July 12, 2006 Goals:- study of the dynamics and fine structureof microflares - Energy transfer and dynamics of wavesin the chromospheric network Instruments: • Dutch Open Telescope (DOT) • Coronal Diagnostic Spectrometer (SOHO/CDS) • Extreme Violet Imaging Telescope (SOHO/EIT) • Michelson Doppler Interferometer (SOHO/MDI) • Transition Region and Coronal Explorer (TRACE) • Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) • Kanzelhöhe Solar Observatory (KSO),Hvar Observatory

  3. Data Description • Best Data Set:July 4, 2006 07:44 – 10:09 UT, Target: AR 10898 • DOT:H (656.3 nm, ± 0.35 Å), Ca II H (396.8 nm), G-Band (430.5 nm), blueandredcontinuum (432 and 651 nm)FoV: 85“ x 65“Time Cadence :< 30 sSpatial Resolution:0.2“ (speckled) • CDS:He I (58.43 nm, T ~ 4x 104 K), O III (59.96 nm, T ~ 105 K), O V (62.97 nm, T ~ 2.5x 105 K), Ne VI (56.28 nm, T ~ 4x 105), Mg IX (38.6 nm, T ~ 1 MK), Si XII (52.07 nm, T ~ 2 MK)FoV: 2“x240“, sitandstaremode; rasterseach ~5.5 hoursforco-alignmentTime cadence:15 sSpatialresolution:2“ x 1.6“ pixels • MDI:highresolutionwhitelightimagesandmagnetogramsFoV:614“ x 300“Time cadence:1 minSpatial Resolution:0.6“/pixel • TRACE:17.1 nm, ~1 MKFoV:511“ x 511“Time Cadence:< 90 sSpatial Resolution:0.5“/pixel • RHESSI: > 3 keVFoV:full diskTime cadence:~ 4 sSpatial resolution:~ down to 2“Spectral resolution:1 keV no attenuation

  4. Target AR 10898 SOHO/MDI White Light 3 RHESSI microflaresobservedby DOT and CDS (plus otherinstruments): RHESSI peaktimes: ~08:26 UT, ~08:38 UT, ~08:45 UT GOES classification:< A9/A1 with/without background

  5. Coronal appearance 08:26 UT event RHESSI 3-8 keV jet Images: TRACE 17.1 nm, T≈1 MK Contours: MDI Magnetic Field(~ 45 min earlier ) +70, +200 G −1500, −600, −200 G

  6. Coronalappearance 08:45 UT event Images: EIT 19.5 nm, T≈1.5 MK RHESSI 3-8 keV

  7. DOT – Chromospheric Response

  8. Chromosphericsignatures 08:26 UT event Hαvelocityscale: [-5,5] km s-1

  9. Chromosphericsignatures 08:38 UT event

  10. Chromosphericsignatures 08:45 UT event

  11. CDS spectrogram chromosphere T≈ 40 000 K

  12. CDS lightcurves 1st event Northern footpoint Log Intensities [ergs cm-2 s-1 sterad-1Å-1] Velocities [km s-1] Southern footpoint

  13. CDS lightcurves 2nd event Log Intensities [ergs cm-2 s-1 sterad-1Å-1] Velocities [km s-1]

  14. CDS lightcurves 3rd event Log Intensities [ergs cm-2 s-1 sterad-1Å-1] Velocities [km s-1]

  15. CDS Flows at the flare peak 08:26 UT event, southern brightening -> such two-componentprofilesareobservedatandbetweentheboth CDS brightenings

  16. Velocities He I line CDS spectrogram chromosphere

  17. CDS spectrogram corona T≈ 2 MK

  18. CDS velocities - summary • 1st event: downflows ∼10–40 km s−1 in He I, O V, Ne VI (Chromosphere, TR) • 2ndevent: upflows ∼10–50 km s−1 in He I, O V, Ne VI • 3rdevent: - southern brightening: downflows∼ 20 km s−1 inHe I and O V • noclearvelocitysignal in thecoronal Si XII line • oppositelydirected, highvelocityflowsattheflarepeaks(spatiallyunresolved) in severallines: upflows:upto80 km s−1 , downflows:upto190 km s−1 • strong downflows (supersonic) intothepenumbra in He I, O V ->consistentwithplasma in free fall

  19. Non-Thermal Electron Flux Density EnergyFluxDensity: Energyflux/ Impact Area -> determinesifevaporationis`gentle‘ or`explosive‘ Electronenergyflux -> RHESSI, Impact area-> DOT (5∙1015 – 4 ∙ 1016 cm2) Result: - highEnergyFluxDensityfound: F ≈ 1.1 - 1.4 ∙ 1010erg cm-2 s-1 - thresholdfromgentleto explosive evap.: ≈1010erg cm-2 s-1

  20. Conclusions • Imaging: • Multi-wavelengthappearanceandmagneticfieldenvironment in basicagreementwiththestandardflare model • finelystructuredbrightenings (DOT, TRACE) • DOT Ha Doppler maps:loop-shapedfibrilswithenhancedvelocitybetweenbrightening -> twistingmotions? • Timing ofthe DOT and CDS emissionfollows RHESSI X-raylightcurve

  21. Conclusions EUV Spectroscopy: - comparisonwithflaresimulations (e.g. Fisher et al. 1984): 1stevent: explosive evaporation , 2ndevent: gentleevaporation - indicationsoftwistingmotions - strong downflowsintothepenumbra-> plasma in free fall? RHESSI Spectroscopy: - evidencefor non-thermal e- - non-th. energyfluxdensityatthethresholdbetweengentleand explosive evaporation Fisher, G. H., Canfield, R. C., & McClymont, A. N. 1984, ApJ, 289, 414

More Related