1 / 38

G 行列理論に基づくバリオン - 核間相互作用の導出

2008/12/25 RCNP. G 行列理論に基づくバリオン - 核間相互作用の導出. 都留文科大学    山本 . 共同研究者 古本 櫻木 (大阪市大). G-matrix interaction を使うことの意味 核力に基づく理解      核模型における有効相互作用. 核内での核力の特徴が G-matrix を通して現れる. たとえば、 nuclear saturation property density-dependent effective interaction central/LS/tensor components.

yetty
Download Presentation

G 行列理論に基づくバリオン - 核間相互作用の導出

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2008/12/25 RCNP G行列理論に基づくバリオン-核間相互作用の導出 都留文科大学    山本  共同研究者 古本 櫻木 (大阪市大)

  2. G-matrix interactionを使うことの意味 核力に基づく理解      核模型における有効相互作用 核内での核力の特徴がG-matrixを通して現れる たとえば、 nuclear saturation property density-dependent effective interaction central/LS/tensor components

  3. T = V+VPT = V+VPV+VPVPV+ ・・・ Ladder sum Pに多体効果を入れるとTがGになる 媒質中での2体散乱

  4. Continuous choice Gap choice + 3-body cluster terms

  5. Nuclear saturation given by various NN potentials (G-matrix calculations) Gap choice E/Aで4~5 MeVの差 これは大きい Continuous choice Repulsive three-body effect in high-density region is necessary for nuclear saturation

  6. Baldo et al. arXiv:astro-ph/0312446 4ρ0 LOBT(C.C.) は高密度まで信頼できる !!!

  7. G行列理論に基づくnuclear saturation LOBT with continuous choice is reliable up to high density Role of Three-Body Interaction (TBA+TBR) is essential for saturation problem

  8. For nuclear saturation, role of TBF is indispensable ! Typically Fujita-Miyazawa diagram ●Attraction at low densities ●Repulsion at high densities Phenomenological TBR by Illinois group for instance

  9. TBA Derivation of effective two-body potential from TBF by Kasahara, Akaishi and Tanaka Fujita-Miyazawa diagram

  10. TBRは実在する! Saturation curve (incompressibility)に不可欠 中性子星の最大質量 ・・・ その起源は? Pure phenomenological Meson exchange diagrams Relativistic (Z-diagram)  ・・・

  11. Phenomenological modeling of Three-Body Repulsion in ESC04 Necessary for maximum mass of neutron star Universal among NNN, NNY, NYY… Three-body force due to triple-meson correlation Reduction of meson mass in medium MV(ρ)=MV exp(-αρ) for vector mesons Medium-Induced Repulsion

  12. TBA Baldo TBR Similar curve is obtained

  13. Maximum-mass problem of neutron stars Importance of universal TBR

  14. G は ωと kF(Qを通じて) に依存する モデル化して有限系に適用 (nuclear-matter G-matrix + LDA) 例えば Density-Dependent interaction (ω-depをkF-depに吸収する) 散乱問題への応用では G(r; kF, Ein)

  15. OMP derived from G-matrix interaction incident energy ω ω-rearrangement Imaginary part

  16. CEG83 Old calculation by Kasahara-Akaishi-Tanaka

  17. From CEG83 to CEG07 Modern NN interaction model ESC Continuous choice for intermediate spectra Including TBA (Fujita-Miyazawa) + TBR Up to higher partial waves on the basis of saturation mechanism

  18. 16O + 16O elastic scattering E/A = 70 MeV Effect of three-body force T.Furumoto, Y. Sakuragi and Y. Yamamoto, (Submitted to Phys.Rev.C rapid communication)

  19. 同じ処方箋で hyperon-nucleus potentialを攻めてみよう

  20. Nijmegen soft-core models (NSC89/97, ESC04/07) Origin of cores pomeron ω meson Repulsive cores are similar to each other in all channels Different from Quark-model core Tamagaki’s Quark Pauli-forbidden states ? ハイパー核で領域Ⅲを見れるか? 原子核現象を通じて核力の領域IIIの異なる modelingを区別することはできなかった

  21. ESC04 modeling PS, S, V, AV nonets not taken (ππ),(πρ),(πω),(πη),(σσ) +(πK),(πK*)・・・ strangeness exchange ESC07 PS-PS exchange small spin-orbit interaction Quark-model-like core

  22. ∑-Nucleus potentials U∑ Intermediate states in (π,K) reactions ∑-nucleus scattering ・・・・・ Interesting problems repulsive ? isospin-dependence spin-orbit interaction imaginary parts (scattering & conversion)

  23. Are repulsive ∑-potentials obtained from Nijmegen models? NHC-F ok but… No(maybe)standard NSC/ESC modeling in spite of elaborate works by Rijken Import the feature of quark model !

  24. various Nijmegen Models 21S023S141S043S1 sum Fss 6.1 -20.2 -8.8 48.2 +9.8 fss2 6.7 -23.9 -9.2 41.2 +7.5 QM-based models

  25. Feature of QM core K. Shimizu, S. Takeuchi and A.J. Buchmann, PTP, Suppl. 137(2000) Almost Pauli-forbidden states

  26. Adjust V[51 Pauli-forbidden state exist in V[51]

  27. Recent Nijmegen approach ESC core = pomeron + ω Assuming “equal parts” of ESC and QM are similar to each other Almost Pauli-forbidden states in [51] are taken into account by changing the pomeron strengths for the corresponding channels gPsqrt(2.5) gP ESC07 models

  28. Optical potential ∑-nucleus folding potential derived from complex G-matrix G∑N(r; E, kF) In N-nucleus scattering problem physical observables can be reproduced with “no free parameter”

  29. relation Effective Mass and E-dependence of U∑ with ESC07 If m∑* > 1 then U’∑ < 0

  30. ESC07 Pauli-forbidden states U∑(real) cancelingが効く W∑には”2乗和”で効く Wscattが大きい理由

  31. Improved LDA by JLM Phys. Rev. C10 (1974) 1391 simple LDA : U(ρ(r),E)

  32. by Maekawa, at al.

  33. NW*Uimag NW=0.65 Same as NA case In general, G-matrix overestimates Uimag as seen in N-nucleus systems

  34. Summary G-matrix method (nuclear matter approach) is very powerful to describe N-nucleus and Nucleus-nucleus scattering observables starting from realistic NN interaction models On the same ground ∑-nucleus potentials are derived from realistic YN interaction models and compared successfully with (π,K) data Challenging physics : Universal TBR Pauli-forbidden states in ∑N

More Related