390 likes | 543 Views
Finding a Hamiltonian path on a folded DNA shape. Hanny Seaman Advisors: Dr. Ido Bachelet Prof. Ron Unger 2013. The Mina and Everard Goodman Faculty of Life Sciences , Bar- Ilan University Ramat- Gan. Hamiltonian path. 1 3245. 1 472365. NP-complete problem!.
E N D
Finding a Hamiltonian path on a folded DNA shape Hanny Seaman Advisors: Dr. IdoBachelet Prof. Ron Unger 2013 The Mina and Everard Goodman Faculty of Life Sciences, Bar-IlanUniversity Ramat-Gan
Hamiltonian path 13245 1472365 NP-complete problem!
Adleman’s solution • DNA strands represent vertices and paths of a 7-node graph • Mix in tube – self complementarity • Filtration
Origami DNA • Folding of DNA to create nanoscale shapes • Terminology: • Scaffold • Staples • caDNAno
Representing the graph • Example: 4 vertices 0
Representing the graph • Example: 4 vertices 0 1
Representing the graph • Example: 4 vertices 0 1 2
Representing the graph • Example: 4 vertices 0 1 3 2
Representing the graph • Example: 4 vertices 0 1 3 2
Representing the graph • Example: 4 vertices 0 1 3 2
Representing the graph • Example: 4 vertices 0 1 3 2
Representing the graph • Example: 4 vertices 0 1 3 2
Representing the graph • Example: 4 vertices 0 1 3 2
Representing the graph • Example: 4 vertices 0 1 3 2
Representing the graph • Example: 4 vertices 0 1 3 2
7 vertices – planning the graph Calculate the edges and vertices sequences
7 vertices – planning the graph 1 2 3 7 6 4 5
Experiment 1- increase number of vertices 7 vertices – increase number of vertices
Experiment 1- increase number of vertices 1 7 vertices – increase number of vertices
Experiment 1- increase number of vertices 1 2 7 vertices – increase number of vertices
Experiment 1- increase number of vertices 1 2 3 7 vertices – increase number of vertices
Experiment 1- increase number of vertices 1 2 3 7 6 4 5 7 vertices – increase number of vertices
Experiment 1- increase number of vertices Max fold Partial fold Unfolded segments 7 vertices – increase number of vertices
Experiment 2- Stepwise assembly 1 2 3 4 5
Experiment 2- Stepwise assembly 1 2 3 7 6 4 5
Experiment 3- 7 vertices - FACS 1 2 3 7 6 4 5
Experiment 3- 7 vertices - FACS (1) Beads (2) Beads Ver1-marked (3) Beads Ver7-marked (4) Beads Ver1 unmarked Vers 2-6 Ver7-marked All staples (5) Beads Ver1-marked Vers 2-6 Ver7-marked All staples
Experiment 3- 7 vertices - FACSResults - Red (5) (4) (3) (2) (1)
Experiment 3- 7 vertices - FACSResults - Green (5) (4) (3) (2) (1)
Summary • Representing graph using origami DNA • Find if exists a Hamiltonian Path
What’s next? • Watching folded DNA using AFM • Experiments with: • edges including polyT • Large number of vertices • Graph with several paths – not only Hamiltonian
תודות • לד"ר עידו בצלת ולפרופ' רון אונגר על ההנחייה והליווי לאורך כל הפרוייקט. • לכל חברי המעבדה על העזרה. • תודה על ההקשבה!