230 likes | 694 Views
Mercury Receiver. Implementation in Verilog Kirk Weedman KD7IRS. Stages. Stages: 5 Decimation: 80/160/320. Stages: 11 Decimation: 4. Decimation: 2. VARCIC. CIC. FIR. rate. 2. Out_strobe. In_strobe. CORDIC. 1. Out_strobe. In_strobe. In_strobe. I. I. ADC Data. 22. 23. 24.
E N D
Mercury Receiver Implementation in Verilog Kirk Weedman KD7IRS
Stages Stages: 5 Decimation: 80/160/320 Stages: 11 Decimation: 4 Decimation: 2 VARCIC CIC FIR rate 2 Out_strobe In_strobe CORDIC 1 Out_strobe In_strobe In_strobe I I ADC Data 22 23 24 24 CIC FIR VARCIC Q Q 22 23 24 24 32 Out_strobe In_strobe Frequency 1 In_strobe Out_strobe In_strobe 122.88 MHz clock
receiver.v //------------------------------------------------------------------------------ // Copyright (c) 2008 Alex Shovkoplyas, VE3NEA //------------------------------------------------------------------------------ module receiver( input clock, //122.88 MHz input [1:0] rate, //00=48, 01=96, 10=192 kHz input [31:0] frequency, output out_strobe, input signed [15:0] in_data, output [23:0] out_data_I, output [23:0] out_data_Q ); wire signed [21:0] cordic_outdata_I; wire signed [21:0] cordic_outdata_Q; //------------------------------------------------------------------------------ // cordic //------------------------------------------------------------------------------ cordiccordic_inst( .clock(clock), .in_data(in_data), //16 bit .frequency(frequency), //32 bit .out_data_I(cordic_outdata_I), //22 bit .out_data_Q(cordic_outdata_Q) );
receiver.v //------------------------------------------------------------------------------ // CIC decimator #1, decimation factor 80/160/320 //------------------------------------------------------------------------------ //I channel wire cic_outstrobe_1; wire signed [22:0] cic_outdata_I1; wire signed [22:0] cic_outdata_Q1; varcic #(.STAGES(5), .DECIMATION(80), .IN_WIDTH(22), .ACC_WIDTH(64), .OUT_WIDTH(23)) varcic_inst_I1( .clock(clock), .in_strobe(1'b1), .extra_decimation(rate), .out_strobe(cic_outstrobe_1), .in_data(cordic_outdata_I), .out_data(cic_outdata_I1) ); //Q channel varcic #(.STAGES(5), .DECIMATION(80), .IN_WIDTH(22), .ACC_WIDTH(64), .OUT_WIDTH(23)) varcic_inst_Q1( .clock(clock), .in_strobe(1'b1), .extra_decimation(rate), .out_strobe(), .in_data(cordic_outdata_Q), .out_data(cic_outdata_Q1) );
receiver.v //------------------------------------------------------------------------------ // CIC decimator #2, decimation factor 4 //------------------------------------------------------------------------------ //I channel wire cic_outstrobe_2; wire signed [23:0] cic_outdata_I2; wire signed [23:0] cic_outdata_Q2; cic #(.STAGES(11), .DECIMATION(4), .IN_WIDTH(23), .ACC_WIDTH(45), .OUT_WIDTH(24)) cic_inst_I2( .clock(clock), .in_strobe(cic_outstrobe_1), .out_strobe(cic_outstrobe_2), .in_data(cic_outdata_I1), .out_data(cic_outdata_I2) ); //Q channel cic #(.STAGES(11), .DECIMATION(4), .IN_WIDTH(23), .ACC_WIDTH(45), .OUT_WIDTH(24)) cic_inst_Q2( .clock(clock), .in_strobe(cic_outstrobe_1), .out_strobe(), .in_data(cic_outdata_Q1), .out_data(cic_outdata_Q2) );
receiver.v //------------------------------------------------------------------------------ // FIR coefficients and sequencing //------------------------------------------------------------------------------ wire signed [23:0] fir_coeff; fir_coeffsfir_coeffs_inst( .clock(clock), .start(cic_outstrobe_2), .coeff(fir_coeff) ); //------------------------------------------------------------------------------ // FIR decimator //------------------------------------------------------------------------------ fir #(.OUT_WIDTH(24)) fir_inst_I( .clock(clock), .start(cic_outstrobe_2), .coeff(fir_coeff), .in_data(cic_outdata_I2), .out_data(out_data_I), .out_strobe(out_strobe) ); fir #(.OUT_WIDTH(24)) fir_inst_Q( .clock(clock), .start(cic_outstrobe_2), .coeff(fir_coeff), .in_data(cic_outdata_Q2), .out_data(out_data_Q), .out_strobe() ); endmodule
Stages Stages: 5 Decimation: 80/160/320 Stages: 11 Decimation: 4 Decimation: 2 VARCIC CIC FIR rate 2 Out_strobe In_strobe CORDIC 1 Out_strobe In_strobe In_strobe I I ADC Data 22 23 24 24 CIC FIR VARCIC Q Q 22 23 24 24 32 Out_strobe In_strobe Frequency 1 In_strobe Out_strobe In_strobe 122.88 MHz clock
CIC Filters A CIC decimator has N cascaded integrator stages clocked at fs, followed by a rate change factor of R, followed by N cascaded comb stages running at fs/R R C C C I I I Three Stage Decimating CIC Filter (N = 3)
CIC Filters Bit Gain For CIC decimators, the gain G at the output of the final comb section is: Gain = (RM) R = decimation rate M = design parameter and is called the differential delay. M can be any positive integer, but it is usually limited to 1 or 2 N = Number of Integrator /Comb stages Assuming two's complement arithmetic, we can use this result to calculate the number of bits required for the last comb due to bit growth. If Bin is the number of input bits, then the number of output bits, Bout, is Bout = N log (RM) + Bin It also turn out that Bout bits are needed for each integrator and comb stage. The input needs to be sign extended to Bout bits, but LSB's can either be truncated or rounded at later stages. N 2
CIC Filters Bit Gain For CIC decimators, the gain G at the output of the final comb section is: Gain = (RM) For the Mercury receiver: R = decimation rate = 320 (when running at 48Khz) for varcic.v and 4 for cic.v M = 1 N = 5 stages for varcic.v and 11 for cic.v Bout = N log (RM) + Bin Bout1 = ceil(5 * 8.3219) + 22 = 42 + 22 = 64. Bout2 = ceil(11 * 2) + 23 = 22 + 23 = 45. See ACC_WIDTH in receiver.v instantiations of varcic.v and cic.v N 2
CIC Filters Filter Gain For a CIC decimator, the normalized gain at the output of the last comb is given by G = G always lies in the interval (1/2 : 1]. Note that when R is a power of two, the gain is unity. This gain can be used to calculate a scale factor, S, to apply to the final shifted output. S = S always lies in the interval [1; 2). By doing this, the CIC decimation filter can have unity DC gain. N N R M R M . . . . N log (RM) N log (RM) 2 2 2 2 . .
CIC Filters Filter Gain For Mercury, the first VARCIC has N = 5 stages, M = 1, and R = 80/160/320 G = = = .762939…. G always lies in the interval (1/2 : 1]. Note that when R is a power of two, the gain is unity. This gain can be used to calculate a scale factor, S, to apply to the final shifted output. S = = 1.31… S always lies in the interval [1; 2). By scaling this amount, the CIC decimation filter can have unity DC gain. 5 5 5 320 320 320 5 log 320 5 log 320 42 2 2 2 2 2
varcic.v module varcic( extra_decimation, clock, in_strobe, out_strobe, in_data, out_data ); //design parameters parameter STAGES = 5; parameter DECIMATION = 320; parameter IN_WIDTH = 22; //computed parameters //ACC_WIDTH = IN_WIDTH + Ceil(STAGES * Log2(decimation factor)) //OUT_WIDTH = IN_WIDTH + Ceil(Log2(decimation factor) / 2) parameter ACC_WIDTH = 64; parameter OUT_WIDTH = 27; //00 = DECIMATION*4, 01 = DECIMATION*2, 10 = DECIMATION input [1:0] extra_decimation; input clock; input in_strobe; output regout_strobe; input signed [IN_WIDTH-1:0] in_data; output reg signed [OUT_WIDTH-1:0] out_data;
varcic.v //------------------------------------------------------------------------------ // control //------------------------------------------------------------------------------ reg [15:0] sample_no; initial sample_no = 16'd0; always @(posedge clock) if (in_strobe) begin if (sample_no == ((DECIMATION << (2-extra_decimation))-1)) begin sample_no <= 0; out_strobe <= 1; end else begin sample_no <= sample_no + 8'd1; out_strobe <= 0; end end else out_strobe <= 0; DECIMATION = 80 extra_decimation sample_no 2’b00 320-1 2’b01 160-1 2’b10 80-1
varcic.v //------------------------------------------------------------------------------ // stages //------------------------------------------------------------------------------ wire signed [ACC_WIDTH-1:0] integrator_data [0:STAGES]; wire signed [ACC_WIDTH-1:0] comb_data [0:STAGES]; assign integrator_data[0] = in_data; assign comb_data[0] = integrator_data[STAGES]; genvari; generate for (i=0; i<STAGES; i=i+1) begin : cic_stages cic_integrator #(ACC_WIDTH) cic_integrator_inst( .clock(clock), .strobe(in_strobe), .in_data(integrator_data[i]), .out_data(integrator_data[i+1]) ); cic_comb #(ACC_WIDTH) cic_comb_inst( .clock(clock), .strobe(out_strobe), .in_data(comb_data[i]), .out_data(comb_data[i+1]) ); end endgenerate Stages = 5 R C C C C C I I I I I
@ 48Khz R = 320 Bout = 22 + ceil(5 log2(320)) Bout = 22 + 42 = 64 OUT_WIDTH = 23 varcic.v //------------------------------------------------------------------------------ // output rounding //------------------------------------------------------------------------------ localparam MSB0 = ACC_WIDTH - 1; //63 localparam LSB0 = ACC_WIDTH - OUT_WIDTH; //41 localparam MSB1 = MSB0 - STAGES; //58 localparam LSB1 = LSB0 - STAGES; //36 localparam MSB2 = MSB1 - STAGES; //53 localparam LSB2 = LSB1 - STAGES; //31 always @(posedge clock) case (extra_decimation) 0: out_data <= comb_data[STAGES][MSB0:LSB0] + comb_data[STAGES][LSB0-1]; 1: out_data <= comb_data[STAGES][MSB1:LSB1] + comb_data[STAGES][LSB1-1]; 2: out_data <= comb_data[STAGES][MSB2:LSB2] + comb_data[STAGES][LSB2-1]; endcase endmodule @ 96Khz R = 160, Bout = 22 + ceil(5 log2(160)) Bout = 22 + 37 = 59 @ 192Khz R = 80 Bout = 22 + ceil(5 log2(80)) Bout = 22 + 32 = 54
cic_comb.v module cic_comb( clock, strobe, in_data, out_data ); parameter WIDTH = 64; input clock; input strobe; input signed [WIDTH-1:0] in_data; output reg signed [WIDTH-1:0] out_data; reg signed [WIDTH-1:0] prev_data; initial prev_data = 0; always @(posedge clock) if (strobe) begin out_data <= in_data - prev_data; prev_data <= in_data; end endmodule strobe WIDTH EN prev_data in_data WIDTH - EN + out_data WIDTH WIDTH clock
cic_integrator.v module cic_integrator( clock, strobe, in_data, out_data ); parameter WIDTH = 64; input clock; input strobe; input signed [WIDTH-1:0] in_data; output reg signed [WIDTH-1:0] out_data; initial out_data = 0; always @(posedge clock) if (strobe) out_data <= out_data + in_data; endmodule strobe WIDTH + EN + out_data WIDTH WIDTH in_data WIDTH clock
FIR Filters A FIR filter is described by the function y(n) = x(n-i) h(i) Or a transfer function Where N = filter Order N-1 i= 0 Low Pass -1 -2 -N H(z) = a + a z + a z + …. a z 0 1 2 N
FIR Filters N-1 Example: N = 8 y(n) = x(n-i) h(i) i = 0 x(n) x(n-7) h(0) h(1) h(2) h(3) h(4) h(5) h(6) h(7) X X X X X X X X + Filter coefficients y(n)
FIR Filters . sin(n w ) c Low Pass . (n w ) c Do how do we calculate the coefficients? For a FIR low pass filter they could be calculated as follows: . . w = 2 p = cutoff frequency a = w(i) . c i i: 0, 1, …. N n = i – N/2 Where w(i) is a window function. Two well known window functions are the Hamming and Blackman F F c c Hamming: Blackman: w(i) = .54 - .46cos ( ( ) ) . . . . 2 p n 2 p n N N ( ) . . 4 p n w(i) = .42 - .5cos + .08cos N -1 -2 -N H(z) = a + a z + a z + …. a z 0 1 2 N
FIR Filters . sin(n w ) c 5th order N = 4 Low Pass . (n w ) c Do how do we calculate the coefficients? For a FIR low pass filter they could be calculated as follows: . . w = 2 p = cutoff frequency a = w(i) . c i i: 0, 1, …. Nn = i – N/2 i: 0, 1, 2, 3, 4 n: -2, -1, 0, 1, 2 Where w(i) is a window function. Two well known window functions are the Hamming and Blackman F F c c Hamming: Blackman: Notice symmetry: w(0) and w(4) values are identical w(i) = .54 - .46cos ( ( ) ) . . . . 2 p n 2 p n N N ( ) . . 4 p n w(i) = .42 - .5cos + .08cos N -1 -2 -N H(z) = a + a z + a z + …. a z 0 1 2 N