1 / 50

Introduction – heavy fermion metal YbRh 2 Si 2

Scanning Tunneling Microscopy on heavy fermion metals Steffen Wirth MPI for Chemical Physics of Solids, Dresden, Germany. Introduction – heavy fermion metal YbRh 2 Si 2 – Scanning Tunneling M icroscopy STM / STS on YbRh 2 Si 2 – topography and surface structure

yosef
Download Presentation

Introduction – heavy fermion metal YbRh 2 Si 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Scanning Tunneling Microscopy on heavy fermion metalsSteffen WirthMPI for Chemical Physics of Solids, Dresden, Germany Introduction – heavy fermion metal YbRh2Si2 – Scanning Tunneling Microscopy STM/STS on YbRh2Si2– topography and surface structure – crystal field excitations – hybridization and Kondo effect Perspectives – extending temperature & field range – quasi-particle interference – doped YbRh2Si2-based materials – other materials: HF superconductors

  2. Thanks materials: Christoph Geibel Frank Steglich STM experim.: Stefan Ernst Cornelius Krellner Band Structure calculation: Gertrud Zwicknagl theory, NCA: Stefan Kirchner 115 materials: Joe Thompson, LANL Zach Fisk, UC Irvine Andrea Bianchi, U Montreal

  3. Quantum criticality in YbRh2Si2  Kondo physics at “high” T among heaviest HF metals (γ ≈ 1.6 Jmol-1K-2)  antiferromagnetic order ≤ 70 mK  quantum critical point T* Custers et al., Nature 424 (2003) 524 YbRh2Si2 Gegenwart et al., NJP 8 (2006) 171 AF

  4. ~T Quantum criticality in YbRh2Si2  Kondo physics at “high” T among heaviest HF metals (γ ≈ 1.6 Jmol-1K-2)  antiferromagnetic order ≤ 70 mK  quantum critical point T* Kondo break-down, energy scale T*  reconstruction of Fermi surface involvement of 4f electrons ~T2 Custers et al., Nature 424 (2003) 524 YbRh2Si2 • PhotoElectron Spectroscopy • de Haas-van Alphen effect • Hall effectPaschen et al., Nature 432, 881 (‘04) • Friedemann et al., PNAS 107, 14547 (2010) AF • Scanning Tunneling Spectroscopy • Ernst et al., Nature 474, 362 (2011)

  5. ScanningTunneling Microscopy tip V tunneling current sample

  6. ScanningTunneling Microscopy NbSe2 12 × 12 nm2, 380 mK, 0 T tip scan V tunneling current sample - atomic resolution due to exponential dependence of I on tip-sample distance - images: scanning the tip at constant height or constant current - images correspond to planes of constant DOS at EF

  7. ScanningTunneling Spectroscopy • keep tip at a predefined position (constant x and y) • open feedback loop of STM controller (constant z) • ramp the applied voltage  local density of states (DOS) V > 0 V < 0 LDOS EF tipsampletipsampletipsample thermal equilibrium positive sample bias negative sample bias zero bias: V = 0 (into empty states) (from occupied states)

  8. ScanningTunneling Spectroscopy dI/dV|V=V s(eVDC) ≡ LDOS low bias, “well behaved” tip, T(E,V,d) smooth DC V > 0 V < 0 LDOS EF tipsampletipsampletipsample thermal equilibrium positive sample bias negative sample bias zero bias: V = 0 (into empty states) (from occupied states)

  9. Introduction – heavy fermion metal YbRh2Si2 – Scanning Tunneling Microscopy STM/STS on YbRh2Si2– topography and surface structure – crystal field excitations – hybridization and Kondo effect Perspectives– extending temperature & field range – quasi-particle interference – doped YbRh2Si2-based materials – other materials: HF superconductors

  10. STM on YbRh2Si2 18 x 18 nm2 • samples cleaved • at T ~ 25 K • stable surfaces • over several weeks FFT

  11. STM on YbRh2Si2 2 x 2 nm2, height scale 25 pm a = 4.01 Å c = 9.86 Å

  12. STM on YbRh2Si2 2 x 2 nm2, height scale 25 pm cleaving: Yb-Si, termination unclear Danzenbächer et al., PRB 75, 045109 (2007)

  13. Topography 70x70 nm2 → very likely, a Si-terminated surface  excellent sample quality defect analysis Δz = 60 pm

  14. Analysis of defects 70x70 nm2 → very likely, a Si-terminated surface  excellent sample quality defect analysis YbRh2Si2 Δz = 60 pm

  15. Analysis of defects 70x70 nm2 → very likely, a Si-terminated surface  excellent sample quality defect analysis - Rh on Si site YbRh2Si2 Δz = 60 pm

  16. Analysis of defects 70x70 nm2 → very likely, a Si-terminated surface  excellent sample quality defect analysis - Rh on Si site - Si on Rh site YbRh2Si2 Δz = 60 pm

  17. Analysis of defects 70x70 nm2 → very likely, a Si-terminated surface  tunneling predominantly into conduction band, tunneling into 4f states neglected Δz = 60 pm

  18. Comparison to chemical analysis homogeneity range: 40.0 – 40.2 at% Rh best samples (RRR): Rh excess topography:380 excess Rh out of 140,000 atoms → 40.12 at% WDXS: 40.16 ± 0.12 at% Rh 150x150 nm2

  19. STS on YbRh2Si2 • observations: • zero-bias dip of conductance • peaks at −17, −27, −43 mV • peak at −6 mV dI/dV (nS) T = 4.6 K V (mV)

  20. Crystal field effects crystal field excitations at 17, 25 and 43 meV INS, Stockert et al., Physica B 378, 157 (2006) -43 mV J= 7/2Hund’s rule multiplet -27 mV -17 mV

  21. Crystal field effects crystal field excitations at 17, 25 and 43 meV INS, Stockert et al., Physica B 378, 157 (2006) -43 mV J= 7/2Hund’s rule multiplet -27 mV -17 mV • first time that CEF excitations are observed in STS •CEF excitations are a true bulk property • CEF excitations originate in Yb → yet another indication for Si-terminated surface • asymmetry: YbRh2Si2 is a hole system with valency ~2.9

  22. Crystal field effects crystal field excitations at 17, 25 and 43 meV INS, Stockert et al., Physica B 378, 157 (2006) use of particle-hole symmetry peak energies independent of T -43 mV -27 mV -17 mV

  23. scattered electron transport electron Kondo interaction and STS on-site Kondo effect: screening cloud diluted magnetic impurities Jun Kondo ‘63 spin-singlet ground state strong correlations ( large)  modified density of states ρ of the conduction band  local conductivity as measured by STS is changed accordingly

  24. Tunneling into two channels local density of states:

  25. Tunneling into two channels local density of states: Theory: - M. Maltseva et al., PRL 103, 206402 (‘09) - J.Figgins, D.Morr, PRL 104,187202(‘10) - P. Wölfle et al., PRL 105, 246401 (‘10) Experiments on URu2Si2: - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, 10383 (‘10)  tunneling into - conduction band - 4f quasiparticle states Fano resonance

  26. Tunneling into two channels local density of states: Theory: - M. Maltseva et al., PRL 103, 206402 (‘09) - J.Figgins, D.Morr, PRL 104,187202(‘10) - P. Wölfle et al., PRL 105, 246401 (‘10) Experiments on URu2Si2: - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, 10383 (‘10) X  tunneling into - conduction band - 4f quasiparticle states Fano resonance  tunneling exclusively into conduction band covers essence of zero-bias dip

  27. Tunneling into two channels local density of states: Theory: - M. Maltseva et al., PRL 103, 206402 (‘09) - J.Figgins, D.Morr, PRL 104,187202(‘10) - P. Wölfle et al., PRL 105, 246401 (‘10) Experiments on URu2Si2: - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, 10383 (‘10) X  tunneling into - conduction band - 4f quasiparticle states Fano resonance  tunneling exclusively into conduction band covers essence of zero-bias dip g(V,T) V multi-level finite-U NCA (S. Kirchner) 4fDOS cal.spectra

  28. Tunneling into two channels local density of states: Theory: - M. Maltseva et al., PRL 103, 206402 (‘09) - J.Figgins, D.Morr, PRL 104,187202(‘10) - P. Wölfle et al., PRL 105, 246401 (‘10) Experiments on URu2Si2: - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, 10383 (‘10) X  tunneling into - conduction band - 4f quasiparticle states Fano resonance  tunneling exclusively into conduction band covers essence of zero-bias dip g(V,T) V multi-level finite-U NCA (S. Kirchner) 4fDOS cal.spectra

  29. Zero-bias conductance dip  tunneling predominantly into conduction band  analysis of the depth of the Kondo dip  good agreement experiment& generalized NCA calculation conductance dip at zero bias rel. depth of dip dashed line: logarithmic decay T.A. Costi, PRL 85, 1504 (2000)

  30. Kondo interaction  criteria: no inflection point within -20 – 0 mV, fulfilled for T≥ 30 K curves at T≥ 30 K used as “background” Gaussian peak

  31. Kondo interaction  criteria: no inflection point within -20 – 0 mV, fulfilled for T≥ 30 K curves at T≥ 30 K used as “background” Gaussian peak, suppressed at T≈ 27 K, from thermopower measurements TKL = 29 K in YbRh2Si2 Köhler et al., PRB 77, 104412 (2008)

  32. Kondo interaction Renormalized Band Calculation; G. Zwicknagl S. Friedemann et al., PRB 82, 035103 (2010) CEF CEF

  33. Kondo interaction Renormalized Band Calculation; G. Zwicknagl S. Friedemann et al., PRB 82, 035103 (2010) CEF CEF  analysis of peak width rather than peak height or position K. Nagaoka et al., PRL 88, 077205 (2002)

  34. Kondo interaction Renormalized Band Calculation; G. Zwicknagl S. Friedemann et al., PRB 82, 035103 (2010) CEF CEF  analysis of peak width rather than peak height or position TKL = 30 ± 6 K K. Nagaoka et al., PRL 88, 077205 (2002)

  35. Kondo interaction C = C(YbRh2Si2)  C(LuRh2Si2) ~ln(TKL/T) TKL =24K TKH~100K TKL = 20–30 K O. Trovarelli et al., PRL 85, 626 (2000)

  36. Kondo interaction * maximum in ρ(T), S(T) at ~80 K local Kondoscreening Kondodip → all CEF levelsCornut + Coqblin 1972  upon cooling, 4f e– condense into CEF Kramers doublet ground state → formation of Kondo lattice below ~30 K = TKL of lowest-lying Kramers doublet peak at –6 mV

  37. Introduction – heavy fermion metal YbRh2Si2 – Scanning Tunneling Microscopy STM/STS on YbRh2Si2– topography and surface structure – crystal field excitations – hybridization and Kondo effect Perspectives – extending temperature & field range – quasi-particle interference – doped YbRh2Si2-based materials – other materials: HF superconductors

  38. ~T Quantum criticality in YbRh2Si2  Kondo physics at “high” T so far: How does the Kondo interaction develop? Custers et al., Nature 424 (2003) 524 YbRh2Si2  quantum critical point Kondo break-down,energy scale T* ~T2 AF * T* T (K) TLFL Gegenwart et al., Science 315 (2007) 969 TN B (T)

  39. STM equipment • UHV and in situ cleaving tools, • preparation chamber, • vibration and sound isolation • low temperature, magnetic field *

  40. ~T Low(er) temperature STS YbRh2Si2 ~T2 AF • lower T → smaller width of crossover • signatures of Kondo breakdown? • cleaving at low temperatures required

  41. Spatial dependence of spectroscopy T = 4.6 K • no local dependences of the • peak observed, neither at • –6 mV nor off the peak topography 800x720 pm2

  42. Spatial dependence of spectroscopy T = 4.6 K • no local dependences of the • peak observed, neither at • –6 mV nor off the peak indication for Si termination tunneling into conduction band spatially coherent state

  43. Quasiparticle interference T. Hanaguri et al., Nature Phys. 3 (´07) 865 • nature of many-body states: • FT of STS maps at • constant energy • successfully applied to • cuprate superconductors • but: 2D systems • SC in CeCoIn5: • dx2-y2 symmetry Ca2-xNaxCuO2Cl2 A. Akbari et al., PRB 84 (11) 134505 • YbRh2Si2: • tetragonal • Is there a unique • solution to FT ? Bi2Sr2CaCu2O8+ K. McElroy et al., Nature 422 (´03) 592

  44. Calculation of conductance curves g(V,T) • so far: • multi-level, finite-U NCA • but: • level-splitting not included • code under development • that explicitly takes into • account the four levels • but: many open parameters V 4fDOS cal.spectra • NCA not applicable at low temperatures, • renormalized band structure calculations at T = 0 • other calculation schemes • e.g. NRG, quantum Monte Carlo simulation

  45. Substitution in YbRh2Si2 Custers et al., Nature 424 (´03) 524  possible on each lattice site: - Ge Si: Si-terminated? - Lu Yb: different cleave? A.R. Schmidt et al., Nature 465, 570 diluted Kondo lattice - Co,Ir Rh: energy scales S.Friedemann et al., Nature Phys. 5 (2009) 465 T (K) B (T) Lu Yb Köhler et al., PRB 77 (´08) 104412

  46. Substitution in YbRh2Si2 Custers et al., Nature 424 (´03) 524  possible on each lattice site: - Ge Si: Si-terminated? - Lu Yb: different cleave? A.R. Schmidt et al., Nature 465, 570 diluted Kondo lattice - Co,Ir Rh: energy scales S.Friedemann et al., Nature Phys. 5 (2009) 465 T (K) B (T) Volume

  47. N.D. Mathur et al., 1998 YbRh2Si2 D.M. Broun, 2008 CePd2Si2 ~T T ~T2 AF Phase diagram J. Custers et al., 2003 unconventional superconductivity (pairing mechanism, order parameter)  magnetically mediated

  48. Phase diagram of CeIrIn5 S. Nair et al., PRL 100 (‘08) 137003 Hall angle  fundamental property, directly related to and hence, charge carrier mobility

  49. STS on CeCoIn5 Tc V= +14 mV Iset = 340 pA Vmod = 70 µV @ 180 Hz

  50. Summary  Topography on YbRh2Si2: - perfect low-T cleave -Si terminated  Spectroscopy on YbRh2Si2: - crystalline electric field (CEF) exitations - single-ion Kondo interaction at 80 – 100 K experiment calculations - Kondo lattice coherence below ~30 K  exciting prospects: - lower T → signatures of quantum critical. - substituted materials → energy scales, FT-STS - heavy fermion superconductors

More Related