500 likes | 641 Views
Scanning Tunneling Microscopy on heavy fermion metals Steffen Wirth MPI for Chemical Physics of Solids, Dresden, Germany. Introduction – heavy fermion metal YbRh 2 Si 2 – Scanning Tunneling M icroscopy STM / STS on YbRh 2 Si 2 – topography and surface structure
E N D
Scanning Tunneling Microscopy on heavy fermion metalsSteffen WirthMPI for Chemical Physics of Solids, Dresden, Germany Introduction – heavy fermion metal YbRh2Si2 – Scanning Tunneling Microscopy STM/STS on YbRh2Si2– topography and surface structure – crystal field excitations – hybridization and Kondo effect Perspectives – extending temperature & field range – quasi-particle interference – doped YbRh2Si2-based materials – other materials: HF superconductors
Thanks materials: Christoph Geibel Frank Steglich STM experim.: Stefan Ernst Cornelius Krellner Band Structure calculation: Gertrud Zwicknagl theory, NCA: Stefan Kirchner 115 materials: Joe Thompson, LANL Zach Fisk, UC Irvine Andrea Bianchi, U Montreal
Quantum criticality in YbRh2Si2 Kondo physics at “high” T among heaviest HF metals (γ ≈ 1.6 Jmol-1K-2) antiferromagnetic order ≤ 70 mK quantum critical point T* Custers et al., Nature 424 (2003) 524 YbRh2Si2 Gegenwart et al., NJP 8 (2006) 171 AF
~T Quantum criticality in YbRh2Si2 Kondo physics at “high” T among heaviest HF metals (γ ≈ 1.6 Jmol-1K-2) antiferromagnetic order ≤ 70 mK quantum critical point T* Kondo break-down, energy scale T* reconstruction of Fermi surface involvement of 4f electrons ~T2 Custers et al., Nature 424 (2003) 524 YbRh2Si2 • PhotoElectron Spectroscopy • de Haas-van Alphen effect • Hall effectPaschen et al., Nature 432, 881 (‘04) • Friedemann et al., PNAS 107, 14547 (2010) AF • Scanning Tunneling Spectroscopy • Ernst et al., Nature 474, 362 (2011)
ScanningTunneling Microscopy tip V tunneling current sample
ScanningTunneling Microscopy NbSe2 12 × 12 nm2, 380 mK, 0 T tip scan V tunneling current sample - atomic resolution due to exponential dependence of I on tip-sample distance - images: scanning the tip at constant height or constant current - images correspond to planes of constant DOS at EF
ScanningTunneling Spectroscopy • keep tip at a predefined position (constant x and y) • open feedback loop of STM controller (constant z) • ramp the applied voltage local density of states (DOS) V > 0 V < 0 LDOS EF tipsampletipsampletipsample thermal equilibrium positive sample bias negative sample bias zero bias: V = 0 (into empty states) (from occupied states)
ScanningTunneling Spectroscopy dI/dV|V=V s(eVDC) ≡ LDOS low bias, “well behaved” tip, T(E,V,d) smooth DC V > 0 V < 0 LDOS EF tipsampletipsampletipsample thermal equilibrium positive sample bias negative sample bias zero bias: V = 0 (into empty states) (from occupied states)
Introduction – heavy fermion metal YbRh2Si2 – Scanning Tunneling Microscopy STM/STS on YbRh2Si2– topography and surface structure – crystal field excitations – hybridization and Kondo effect Perspectives– extending temperature & field range – quasi-particle interference – doped YbRh2Si2-based materials – other materials: HF superconductors
STM on YbRh2Si2 18 x 18 nm2 • samples cleaved • at T ~ 25 K • stable surfaces • over several weeks FFT
STM on YbRh2Si2 2 x 2 nm2, height scale 25 pm a = 4.01 Å c = 9.86 Å
STM on YbRh2Si2 2 x 2 nm2, height scale 25 pm cleaving: Yb-Si, termination unclear Danzenbächer et al., PRB 75, 045109 (2007)
Topography 70x70 nm2 → very likely, a Si-terminated surface excellent sample quality defect analysis Δz = 60 pm
Analysis of defects 70x70 nm2 → very likely, a Si-terminated surface excellent sample quality defect analysis YbRh2Si2 Δz = 60 pm
Analysis of defects 70x70 nm2 → very likely, a Si-terminated surface excellent sample quality defect analysis - Rh on Si site YbRh2Si2 Δz = 60 pm
Analysis of defects 70x70 nm2 → very likely, a Si-terminated surface excellent sample quality defect analysis - Rh on Si site - Si on Rh site YbRh2Si2 Δz = 60 pm
Analysis of defects 70x70 nm2 → very likely, a Si-terminated surface tunneling predominantly into conduction band, tunneling into 4f states neglected Δz = 60 pm
Comparison to chemical analysis homogeneity range: 40.0 – 40.2 at% Rh best samples (RRR): Rh excess topography:380 excess Rh out of 140,000 atoms → 40.12 at% WDXS: 40.16 ± 0.12 at% Rh 150x150 nm2
STS on YbRh2Si2 • observations: • zero-bias dip of conductance • peaks at −17, −27, −43 mV • peak at −6 mV dI/dV (nS) T = 4.6 K V (mV)
Crystal field effects crystal field excitations at 17, 25 and 43 meV INS, Stockert et al., Physica B 378, 157 (2006) -43 mV J= 7/2Hund’s rule multiplet -27 mV -17 mV
Crystal field effects crystal field excitations at 17, 25 and 43 meV INS, Stockert et al., Physica B 378, 157 (2006) -43 mV J= 7/2Hund’s rule multiplet -27 mV -17 mV • first time that CEF excitations are observed in STS •CEF excitations are a true bulk property • CEF excitations originate in Yb → yet another indication for Si-terminated surface • asymmetry: YbRh2Si2 is a hole system with valency ~2.9
Crystal field effects crystal field excitations at 17, 25 and 43 meV INS, Stockert et al., Physica B 378, 157 (2006) use of particle-hole symmetry peak energies independent of T -43 mV -27 mV -17 mV
scattered electron transport electron Kondo interaction and STS on-site Kondo effect: screening cloud diluted magnetic impurities Jun Kondo ‘63 spin-singlet ground state strong correlations ( large) modified density of states ρ of the conduction band local conductivity as measured by STS is changed accordingly
Tunneling into two channels local density of states:
Tunneling into two channels local density of states: Theory: - M. Maltseva et al., PRL 103, 206402 (‘09) - J.Figgins, D.Morr, PRL 104,187202(‘10) - P. Wölfle et al., PRL 105, 246401 (‘10) Experiments on URu2Si2: - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, 10383 (‘10) tunneling into - conduction band - 4f quasiparticle states Fano resonance
Tunneling into two channels local density of states: Theory: - M. Maltseva et al., PRL 103, 206402 (‘09) - J.Figgins, D.Morr, PRL 104,187202(‘10) - P. Wölfle et al., PRL 105, 246401 (‘10) Experiments on URu2Si2: - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, 10383 (‘10) X tunneling into - conduction band - 4f quasiparticle states Fano resonance tunneling exclusively into conduction band covers essence of zero-bias dip
Tunneling into two channels local density of states: Theory: - M. Maltseva et al., PRL 103, 206402 (‘09) - J.Figgins, D.Morr, PRL 104,187202(‘10) - P. Wölfle et al., PRL 105, 246401 (‘10) Experiments on URu2Si2: - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, 10383 (‘10) X tunneling into - conduction band - 4f quasiparticle states Fano resonance tunneling exclusively into conduction band covers essence of zero-bias dip g(V,T) V multi-level finite-U NCA (S. Kirchner) 4fDOS cal.spectra
Tunneling into two channels local density of states: Theory: - M. Maltseva et al., PRL 103, 206402 (‘09) - J.Figgins, D.Morr, PRL 104,187202(‘10) - P. Wölfle et al., PRL 105, 246401 (‘10) Experiments on URu2Si2: - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, 10383 (‘10) X tunneling into - conduction band - 4f quasiparticle states Fano resonance tunneling exclusively into conduction band covers essence of zero-bias dip g(V,T) V multi-level finite-U NCA (S. Kirchner) 4fDOS cal.spectra
Zero-bias conductance dip tunneling predominantly into conduction band analysis of the depth of the Kondo dip good agreement experiment& generalized NCA calculation conductance dip at zero bias rel. depth of dip dashed line: logarithmic decay T.A. Costi, PRL 85, 1504 (2000)
Kondo interaction criteria: no inflection point within -20 – 0 mV, fulfilled for T≥ 30 K curves at T≥ 30 K used as “background” Gaussian peak
Kondo interaction criteria: no inflection point within -20 – 0 mV, fulfilled for T≥ 30 K curves at T≥ 30 K used as “background” Gaussian peak, suppressed at T≈ 27 K, from thermopower measurements TKL = 29 K in YbRh2Si2 Köhler et al., PRB 77, 104412 (2008)
Kondo interaction Renormalized Band Calculation; G. Zwicknagl S. Friedemann et al., PRB 82, 035103 (2010) CEF CEF
Kondo interaction Renormalized Band Calculation; G. Zwicknagl S. Friedemann et al., PRB 82, 035103 (2010) CEF CEF analysis of peak width rather than peak height or position K. Nagaoka et al., PRL 88, 077205 (2002)
Kondo interaction Renormalized Band Calculation; G. Zwicknagl S. Friedemann et al., PRB 82, 035103 (2010) CEF CEF analysis of peak width rather than peak height or position TKL = 30 ± 6 K K. Nagaoka et al., PRL 88, 077205 (2002)
Kondo interaction C = C(YbRh2Si2) C(LuRh2Si2) ~ln(TKL/T) TKL =24K TKH~100K TKL = 20–30 K O. Trovarelli et al., PRL 85, 626 (2000)
Kondo interaction * maximum in ρ(T), S(T) at ~80 K local Kondoscreening Kondodip → all CEF levelsCornut + Coqblin 1972 upon cooling, 4f e– condense into CEF Kramers doublet ground state → formation of Kondo lattice below ~30 K = TKL of lowest-lying Kramers doublet peak at –6 mV
Introduction – heavy fermion metal YbRh2Si2 – Scanning Tunneling Microscopy STM/STS on YbRh2Si2– topography and surface structure – crystal field excitations – hybridization and Kondo effect Perspectives – extending temperature & field range – quasi-particle interference – doped YbRh2Si2-based materials – other materials: HF superconductors
~T Quantum criticality in YbRh2Si2 Kondo physics at “high” T so far: How does the Kondo interaction develop? Custers et al., Nature 424 (2003) 524 YbRh2Si2 quantum critical point Kondo break-down,energy scale T* ~T2 AF * T* T (K) TLFL Gegenwart et al., Science 315 (2007) 969 TN B (T)
STM equipment • UHV and in situ cleaving tools, • preparation chamber, • vibration and sound isolation • low temperature, magnetic field *
~T Low(er) temperature STS YbRh2Si2 ~T2 AF • lower T → smaller width of crossover • signatures of Kondo breakdown? • cleaving at low temperatures required
Spatial dependence of spectroscopy T = 4.6 K • no local dependences of the • peak observed, neither at • –6 mV nor off the peak topography 800x720 pm2
Spatial dependence of spectroscopy T = 4.6 K • no local dependences of the • peak observed, neither at • –6 mV nor off the peak indication for Si termination tunneling into conduction band spatially coherent state
Quasiparticle interference T. Hanaguri et al., Nature Phys. 3 (´07) 865 • nature of many-body states: • FT of STS maps at • constant energy • successfully applied to • cuprate superconductors • but: 2D systems • SC in CeCoIn5: • dx2-y2 symmetry Ca2-xNaxCuO2Cl2 A. Akbari et al., PRB 84 (11) 134505 • YbRh2Si2: • tetragonal • Is there a unique • solution to FT ? Bi2Sr2CaCu2O8+ K. McElroy et al., Nature 422 (´03) 592
Calculation of conductance curves g(V,T) • so far: • multi-level, finite-U NCA • but: • level-splitting not included • code under development • that explicitly takes into • account the four levels • but: many open parameters V 4fDOS cal.spectra • NCA not applicable at low temperatures, • renormalized band structure calculations at T = 0 • other calculation schemes • e.g. NRG, quantum Monte Carlo simulation
Substitution in YbRh2Si2 Custers et al., Nature 424 (´03) 524 possible on each lattice site: - Ge Si: Si-terminated? - Lu Yb: different cleave? A.R. Schmidt et al., Nature 465, 570 diluted Kondo lattice - Co,Ir Rh: energy scales S.Friedemann et al., Nature Phys. 5 (2009) 465 T (K) B (T) Lu Yb Köhler et al., PRB 77 (´08) 104412
Substitution in YbRh2Si2 Custers et al., Nature 424 (´03) 524 possible on each lattice site: - Ge Si: Si-terminated? - Lu Yb: different cleave? A.R. Schmidt et al., Nature 465, 570 diluted Kondo lattice - Co,Ir Rh: energy scales S.Friedemann et al., Nature Phys. 5 (2009) 465 T (K) B (T) Volume
N.D. Mathur et al., 1998 YbRh2Si2 D.M. Broun, 2008 CePd2Si2 ~T T ~T2 AF Phase diagram J. Custers et al., 2003 unconventional superconductivity (pairing mechanism, order parameter) magnetically mediated
Phase diagram of CeIrIn5 S. Nair et al., PRL 100 (‘08) 137003 Hall angle fundamental property, directly related to and hence, charge carrier mobility
STS on CeCoIn5 Tc V= +14 mV Iset = 340 pA Vmod = 70 µV @ 180 Hz
Summary Topography on YbRh2Si2: - perfect low-T cleave -Si terminated Spectroscopy on YbRh2Si2: - crystalline electric field (CEF) exitations - single-ion Kondo interaction at 80 – 100 K experiment calculations - Kondo lattice coherence below ~30 K exciting prospects: - lower T → signatures of quantum critical. - substituted materials → energy scales, FT-STS - heavy fermion superconductors