150 likes | 233 Views
Sequential Aggregate Signatures and Multisignatures Without Random Oracles. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Secure BGP. BGP “Speakers” send path updates messages S-BGP sequence of messages + sigs. 4096 byte size limit. (M1, 1 ).
E N D
Sequential Aggregate Signatures and MultisignaturesWithout Random Oracles Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters
Secure BGP • BGP “Speakers” send path updates messages • S-BGP sequence of messages + sigs. • 4096 byte size limit (M1,1) (M1,1), (M2,2), (M3,3) (M1,1), (M2,2)
Aggregate Sigs [BGLS03] Sign Aggregate
Verisign Versign Europe NatWest NatWest WWW Aggregate Signatures [BGLS03] • A single short aggregate provides nonrepudiation for many different messages under many different keys • More general than multisignatures • Applications: • X.509 certificate chains • Secure BGP route attestations • PGP web of trust
BGLS Aggregate Sigs BLS Sigs: PK = ga SK=a Sign(SK,M): =H(M)a Verify(PK,M,): e(,g)=e( H(M), PK) Secure in R.O. Model --- Deterministic Signatures
BGLS Aggregate Sigs PKi = gai SKi=ai Sign(SKi,Mi): i=H(Mi)ai Aggregate(1,…n): *=i=1…ni Verify(PKi,M1,…,Mn ,*): e(*,g)=i=1,…n e( H(Mi), PKi) Verification requires n pairings
Difficulty w/o Random Oracles • Known efficient signatures have a random component • Strong RSA sigs[GHR’ 99, CS’99] • B-Map [BB’04,CL’04.W’05] • Tree- sigs • Difficult to aggregate • Independent signatures => Independent randomness
Sequential Aggregates [LMRS’04] • Signing and Aggregation are a single operation • Inherently sequenced; not appropriate for PGP Sign and Aggregate
Our Approach • Build from W’05 signatures • Signer uses same randomess from previous sig • Then re-randomizes
Our Aggregate Sigs W’05 Sigs: PK = e(g,g)a ,h, u1,…,um SK=a Sign(SK,M): =(’,’’)=ga (h i=1,…m uMi)r , g-r Verify(PK,M,): e( ’,g) e( ’’, h i=1,…m uMi)=e(g,g)a Secure w/o R.O.s
Our Aggregate Sigs PKi = e(g,g)ai ,hi=gyi’, ui,1=gyi,1…,um, =gyi,m SK =ai ,yi’, yi,1,…,yi,m Agg(SKi,Mi,*=1,2): x=DL(h j=1,…m uMi,j ) • *=(’,’’)=ga2x1, 2 Verify(PK,M1,…Mn,*=(’,’’)): e( ’,g) e( ’’, i=1…n hjj=1,…m uMi,j)=i=1…n e(g,g)ai Know DL PK
Comparisons Shorter than LMRS Faster Ver. than BGLS
Summary and Open Problems • Sequential Aggregate Signatures w/o R.O. • Use same randomness sequentially • Arguably better Performance than R.O. schemes • Multi-Sigs and Verifiable Enc. Sigs • Shorter Public Parameters • Certificate Chains • Full Aggregate Signatures
Sequential Aggregate Chosen-Key Model • Nontriviality: • σ* is a valid sequential aggregate • challenge key pk = pkj* for some j; • No oracle query at pk1*,…,pkj*;M1*,…,Mj*. AggSign() oracle Adversary