1 / 46

What is Data?

What is Data?. Information, in the form of facts or figures obtained from experiments or surveys, used as a basis for making calculations or drawing conclusions Encarta dictionary . Two Types of Data:. Qualitative Quantitative. Qualitative Data.

yukio
Download Presentation

What is Data?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. What is Data? Information, in the form of facts or figures obtained from experiments or surveys, used as a basis for making calculations or drawing conclusions Encarta dictionary

  2. Two Types of Data: Qualitative Quantitative

  3. Qualitative Data • Information that relates to characteristics ordescription (observable qualities) • Information is often grouped by descriptive category • Examples • Species of plant • Type of insect • Shades of color • Rank of flavor in taste testing Remember: qualitative data can be “scored” and evaluated numerically

  4. Qualitative data, manipulated numerically • Survey results, teens and need for environmental action.

  5. Quantitative Data • Quantitative – measured using a naturally occurring numerical scale • Examples • Chemical concentration • Temperature • Length • Weight…etc.

  6. Quantitative Data • Measurements are often displayed graphically

  7. Quantitation = Measurement • In data collection for Biology, data must be measured carefully, using laboratory equipment (ex. Timers, metersticks, pH meters, balances , pipettes, etc) • The limits of the equipment used add some uncertainty to the data collected. All equipment has a certain magnitude of uncertainty. For example, is a ruler that is mass-produced a good measure of 1 cm? 1mm? 0.1mm? • For quantitative testing, you must indicate the level of uncertainty of the tool that you are using for measurement!!

  8. How to determine uncertainty? • Usually the instrument manufacturer will indicate this – read what is provided by the manufacturer. • Be sure that the number of significant digits in the data table/graph reflects the precision of the instrument used (for ex. If the manufacturer states that the accuracy of a balance is to 0.1g – and your average mass is 2.06g, be sure to round the average to 2.1g) Your data must be consistent with your measurement tool regarding significant figures.

  9. Finding the limits • As a “rule-of-thumb”, if not specified, use +/- 1/2 of the smallest measurement unit (ex metric ruler is lined to 1mm,so the limit of uncertainty of the ruler is +/- 0.5 mm.) • If the room temperature is read as 25 degrees C, with a thermometer that is scored at 1 degree intervals – what is the range of possible temperatures for the room? • (ans.s +/- 0.5 degrees Celsius - if you read 15oC, it may in fact be 14.5 or 15.5 degrees)

  10. Looking at data • How accurate is the data? (How close are the data to the “real” results?) This is also considered as BIAS • How precise is the data? (All test systems have some uncertainty, due to limits of measurement) Estimation of the limits of the experimental uncertainty is essential. • Let’s do a sample problem:

More Related