1 / 59

CV 輪講 Putting Objects in Perspective

CV 輪講 Putting Objects in Perspective. 藤吉研究室 土屋成光 2008 年 7 月 1 日. Back ground. 一般物体認識 / 画像シーン認識 低解像度 見えの違い 奥行きによるサイズの違い   ⇒局所的な認識法が通用しない 人間は物体間の関係を利用 三次元構造のモデル化 局所的な認識手法を高精度に. Putting Objects in Perspective. Derek Hoiem , Alexei A. Efros , Martial Hebert

yuma
Download Presentation

CV 輪講 Putting Objects in Perspective

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CV輪講Putting Objects in Perspective 藤吉研究室 土屋成光 2008年7月1日

  2. Background • 一般物体認識/画像シーン認識 • 低解像度 • 見えの違い • 奥行きによるサイズの違い   ⇒局所的な認識法が通用しない • 人間は物体間の関係を利用 • 三次元構造のモデル化 • 局所的な認識手法を高精度に

  3. Putting Objects in Perspective Derek Hoiem,Alexei A. Efros,Martial Hebert Carnegie Mellon UniversityRobotics Institute CVPR2006

  4. Understanding an Image

  5. Today: Local and Independent

  6. 検出結果

  7. Local Object Detection False Detections True Detection Missed Missed True Detections Local Detector: [Dalal-Triggs 2005]

  8. Object Support

  9. Object Surface? Support? Surface Estimation Image Support Vertical Sky V-Center V-Right V-Porous V-Solid V-Left [Hoiem, Efros, Hebert ICCV 2005] Software available online

  10. Object Size in the Image Image World

  11. Object Size ↔ Camera Viewpoint Loose Viewpoint Prior Input Image

  12. Object Size ↔ Camera Viewpoint Loose Viewpoint Prior Input Image

  13. Object Size ↔ CameraViewpoint Viewpoint Object Position/Sizes

  14. Object Size ↔ Camera Viewpoint Viewpoint Object Position/Sizes

  15. Object Size ↔ Camera Viewpoint Viewpoint Object Position/Sizes

  16. Object Size ↔ Camera Viewpoint Viewpoint Object Position/Sizes

  17. Efficient from surfaceand viewpoint Image P(surfaces) P(viewpoint) P(object) P(object | surfaces) P(object | viewpoint)

  18. Efficient from surfaceand viewpoint Image P(surfaces) P(viewpoint) P(object | surfaces, viewpoint) P(object)

  19. Scene Parts Are All Interconnected Objects 3D Surfaces Camera Viewpoint

  20. Input to Algorithm Object Detection Surface Estimates Viewpoint Prior Local Car Detector Local Ped Detector Local Detector: [Dalal-Triggs 2005] Surfaces: [Hoiem-Efros-Hebert 2005]

  21. Approximate Model Objects 3D Surfaces Viewpoint

  22. Inference over Tree Viewpoint θ Local Object Evidence Local Object Evidence Objects ... o1 on Local Surface Evidence Local Surface Evidence Local Surfaces … s1 sn

  23. Viewpoint estimation Viewpoint Prior Viewpoint Final Likelihood Likelihood Horizon Height Horizon Height

  24. ObjectIdentitie • Localdetector

  25. Surface Geometry Probability map

  26. Object detection Car: TP / FP Ped: TP / FP Initial (Local) Final (Global) Car Detection 4 TP / 1 FP 4 TP / 2 FP Ped Detection 4 TP / 0 FP 3 TP / 2 FP Local Detector: [Dalal-Triggs 2005]

  27. Experiments on LabelMe Dataset • Testing with LabelMe dataset: 422 images • 923 Cars at least 14 pixels tall • 720 Peds at least 36 pixels tall

  28. Each piece of evidence improves performance Pedestrian Detection Car Detection Local Detector from [Murphy-Torralba-Freeman 2003]

  29. Can be used with any detector that outputs confidences Car Detection Pedestrian Detection Local Detector: [Dalal-Triggs 2005] (SVM-based)

  30. Accurate Horizon Estimation [Murphy-Torralba-Freeman 2003] [Dalal- Triggs 2005] Horizon Prior Median Error: 8.5% 4.5% 3.0% 90% Bound:

  31. Qualitative Results Car: TP / FP Ped: TP / FP Initial: 2 TP / 3 FP Final: 7 TP / 4 FP Local Detector from [Murphy-Torralba-Freeman 2003]

  32. Qualitative Results Car: TP / FP Ped: TP / FP Initial: 1 TP / 14 FP Final: 3 TP / 5 FP Local Detector from [Murphy-Torralba-Freeman 2003]

  33. Qualitative Results Car: TP / FP Ped: TP / FP Initial: 1 TP / 23 FP Final: 0 TP / 10 FP Local Detector from [Murphy-Torralba-Freeman 2003]

  34. Qualitative Results Car: TP / FP Ped: TP / FP Initial: 0 TP / 6 FP Final: 4 TP / 3 FP Local Detector from [Murphy-Torralba-Freeman 2003]

  35. Geometric Context • Estimate surface ground: green, sky: blue, vertical: red, o:porous, x: solid

  36. Perspective Geometric Cues Color Texture Location

  37. Robust Spatial Support • oversegmentation RGB Pixels Superpixels [Felzenszwalb and Huttenlocher 2004]

  38. Multiple Segmentations • 単一のセグメントではセグメントエラーの可能性 • 複数のセグメント数でセグメンテーション Multiple Segmentations Superpixels …

  39. Labeling Segments … … 各セグメント結果を統合

  40. Learn from training images • 前準備 • multiple segmentationの算出 • 各セグメントのラベルの算出 – ground, vertical, sky, or “mixed” • boosted decision trees による密度計算 • 8 nodes per tree • Logistic regression version of Adaboost [Collins and Schapire and Singer 2002] Homogeneity Likelihood Label Likelihood

  41. Image Labeling Labeled Segmentations … Learned from training images Labeled Pixels

  42. meters meters Summary & Future Work Ped Ped Car • Reasoning in 3D: • Object to object • Scene label • Object segmentation

  43. Conclusion • Image understanding is a 3D problem • Must be solved jointly • This paper is a small step • Much remains to be done

  44. CV輪講Recovering Occlusion Boundaries from a Single Image,Closing the Loop in Scene Interpretation 藤吉研究室 土屋成光 2008年8月26日

  45. Background • 一般物体認識/画像シーン認識 • 低解像度 • 見えの違い • 奥行きによるサイズの違い   ⇒局所的な認識法が通用しない • 人間は物体間の関係を利用 • 三次元構造のモデル化 • 局所的な認識手法を高精度に

  46. Recovering Occlusion Boundaries from a Single Image Derek Hoiem,Andrew N. Stein, Alexei A. Efros,Martial Hebert Carnegie Mellon UniversityRobotics Institute ICCV’07

  47. 単画像からのオクルージョン理解 • オクルージョン,境界理解 • 物体を探索する際に必須 • Edge, region, depthによって推定

  48. 手法の流れ • 千領域にセグメンテーション Watershed with Pb soft boundaries • Region, Boundary, 3D Cuesの算出 depth : horizon + junction to ground • Boundaryの算出 Conditional random field (CRF) • Boundaryを用いて更にセグメンテーション

More Related