330 likes | 411 Views
6. Wilsonian Matching. 6.1 Basic Concept. ◎ Generating functional in QCD. J : external source fields. ◎ Generating functional in EFT. F : parameters of EFT. ☆ Wilsonian matching. bare theory. high energy. QCD. quarks and gluons. L. matching. HLS. r and p. Bare theory.
E N D
6. Wilsonian Matching
◎ Generating functional in QCD J : external source fields ◎ Generating functional in EFT F : parameters of EFT ☆ Wilsonian matching bare theory
high energy QCD quarks and gluons L matching HLS r and p Bare theory bare parameters Quantum effects low energy Quantum theory physical quantities
☆ Axialvector current correlator in space-like region ◎ low energy limit・・・ π dominance
◎ high energy region ・・・Operator Product Expansion (OPE) ・・・ renormalization scale of QCD 2 F (0) π μ 2 Λ ~ 1 GeV
◎ Around Q2~ Λ2~ (1 GeV)2 4 including O(p ) terms 2 2 F (0) F (Λ) π π ・ Integrating out quarks and gluons ・・・ not well-defined degrees of freedom in the low energy region ・ bare HLS Lagrangian Λ
# Λ > μ > m ・・・ through RGE ρ HLS OPE 2 2 F (0) F (μ) m π π ρ μ 2 Λ ◎ Λ > μ ・・・ inclusion of quantum corrections from π and ρ
# m> μ ・・・ through the RGE in ChPT ρ 2 2 F (μ) F (0) m π π ρ μ 2 HLS OPE ChPT Λ effect of finite renormalization
6.2 Wilsonian Matching Conditions
◎ QCD (OPE) Matching ☆Axialvector and Vector Current Correlators ◎ HLS
6.3 Determination of the Bare Parameters
☆ Bare parameters Λ = 1.0 ~ 1.2 GeV • large enough for validity of OPE • small enough for validity of HLS ☆ Matching Scale Λ ☆ Inputs 3 Wilsonian matching conditions ・ Inputs for OPE
6.4 Results of the Wilsonian Matching
☆ Parameters at m scale ρ bare parameters → (RGE) → parameters at m ρ
4 quantities directly related to experiment ☆ Physical Predictions
◎ ρ- γ mixing strength ・ tree ・ loop through RGE ・ typical prediction cf :
◎ Gasser-Leutwyler’s parameter L 10 ・ typical prediction cf :
loop effects through RGE ◎ ρππ coupling ・ bare Lagrangian ・ effective interaction ・ typical prediction cf :
◎ Gasser-Leutwyler’s parameter L 9 ・ typical prediction for cf :
◎ parameter a(0) ・・・ characterize Vector dominance loop effects through RGE ・ bare Lagrangian ・ effective interaction ・ typical prediction ・・・ VD is well satisfied
+ 0 ☆ Why π - π mass difference ? ◎ ⇔ vacuum structure M.E. Peskin 80’, J. Preskil 80’ ⇒ stability of U(1)em symmtric vacuum ⇒ instability : U(1)em is broken ◎ ⇔ mass of little Higgs 6.5 π+ - π0 Mass Difference and Wilsonian Matching M.H. M.Tanabashi and K.Yamawaki, Phys. Lett. B 568 103 (2003)
☆ How to calculate ? ◎ A formula from Dashen’s theorem bare parameter improve by RGE
☆ Prediction Quantum correction through RGE > 0 in good agreement