1 / 35

PRAXIS: A Combined micro-Raman – micro-XRF Instrument

PRAXIS: A Combined micro-Raman – micro-XRF Instrument K. Janssens a , a Department of Chemistry, University of Antwerp, Belgium

zach
Download Presentation

PRAXIS: A Combined micro-Raman – micro-XRF Instrument

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PRAXIS: A Combined micro-Raman – micro-XRF Instrument K. Janssensa,a Department of Chemistry, University of Antwerp, Belgium E. Castelluccib, B. Rousselc, J. Oswaltc, J. Schmalzd, J. Tilgnerd, A. Bjeoumikhovd, N. Langhoffd, P. Ramose, I. Ruisáncheze, K. Andrikopoulosf, E. Bulskag, J. Zieba-Palush a Department of Chemistry, University of Antwerp, Belgium b Department of Chemistry, Universita' di Firenze, Sesto Fiorentino (Fi), Italy c Jobin-Yvon – Raman Division, Villeneuve d'Ascq, France d Institut für Gerätebau, Berlin, Germany e Department of Chemistry, Universitat Rovira I Virgili, Tarragona, Spain f Sacred Convent of the Annunciation IMSP, Ormylia-Chalkidiki, Greece g Department of Chemistry, University of Warsaw, Poland h Institute of Forensic Research, Krakow, Poland

  2. Part I: Analytical Reference (461 pp.) • UV, IR, X-ray imaging • Electron microscopy • X-ray based methods • Ion-beam microanalysis • XPS / AES • LA-ICP-MS • IR & Raman spectroscopy • Secondary ion microscopy • Part II: Case-studies (335 pp.) • Copper alloy artifacts • Precious metal artifacts • Byzantine frescoes and icons • Medieval silver coins • Illuminated manuscripts • Glass artefacts • Corrosion of glass/enamels • Iron-gall ink corrosion • Elsevier Science Publishers, Amsterdam • ISBN 0-444-50738-8 • December 2004 - 17 Chapters, 800 pages

  3. ND Microanalysis of Cultural Heritage materials • Methods • Electron microscopy Electrons, X-rays Atomic • Ion-beam microanalysis Protons, X-rays • LA-ICP-MS Laser, MS • X-ray based methods X-rays Mixed • XPS / AES X-rays, electrons • Secondary ion microscopy Heavy ions, MS • IR & Raman spectroscopy Laser, photons Molecular • Problems • Copper alloy artifacts ESEM, XRD, FTIR • Precious metal artifacts PIXE, PIGE, XRF • Glass artifacts LA-ICP-MS, XRF, SEM, NAA • Medieval silver coins XRF, PIXE • Byzantine frescoes and iconsRaman, FTIR, UV • Illuminated manuscriptsRaman, XRF • Corrosion of glass/enamels SEM, SIMS, IR • Iron-gall ink corrosion SEM, XRF, XANES, ICP-MS

  4. PRAXISPortable Raman – X-ray Instrument RS ↓ Molecular information Surface information XRF ↓ Elemental information ‘Deep’ information fluorescent photons scattered photons μ-XRF confocal μ-RS Portable μ-XRF Remote probe μ-RS PRAXIS

  5. Ka and Kb line-emission X-ray fluorescence analysisEnergy dispersive spectra: characteristic lines

  6. X-ray fluorescence analysisconventional instrumentation irradiated area: 1-2 cm2 ↑ Polarized excitation ← Direct excitation

  7. Polycapillary lens X-ray X-ray Capillary Optics X-ray S q0 q0 q0 q0 Straight capillary X-ray S Conical capillary q1 q0 S Ellipsoidal capillary X-ray

  8. Zoom Microscope X-rayTube+ PC lens Si DriftChamber Detector Transportable µ-XRF Compact instrumentation for in-situ analyses M. Schreiner et al., Academy of Fine Arts, Vienna Academy of Fine Arts,Vienna Loetzglass Exhibition of Assyrian Gold Artefacts, January-June 2001 Kunsthistorisches Museum, Vienna

  9. Portable µ-XRF Compact instrumentation for in-situ analyses Axial X-ray beam Polycapillary lens → 60-80 μm Drift-chamber EDX-detector 3 laser pointers (positioning) Optical Microscope He-flushing system (low-Z) XYZ scanning of head [H. Bronk et al., TU Berlin]

  10. Microscopic RSVarious instrument mfg visual/NIR lasers dispersive Raman with parallel CCD detection

  11. Microscopic RSConfocal measurements

  12. Remote probe RSFibre optics – confocality ?

  13. PRAXISMajor integration tasks • find mutually compatible geometry of XRF and Raman components • improve confocality characteristics of Raman part • → increase P/B ratio • decrease XRF analyzed area • demonstrate use in the cultural heritage sector • in forensic investigations

  14. conventionallaboratory Raman red/purple: anthocyanine colourant conventionalRaman remote probe redesignedULWD Raman probe PRAXIS Decrease the effect of the fluorescent background PITTCON’05 announcement A new confocal Raman fibre optic probe brings new opportunities for Raman sampling F. Adar, S. Morel, B. Roussel, JOBIN YVON K. Janssens, UNIVERSITY OF ANTWERP L. Chrit, C.Hadjur, L’OREAL ‘standard’ remote probes offer non-optimal P/B ratio → use high-magnification objective lens → use fibre entrance as confocal pinhole → permit different λ’s to be used ~ 5 μm lateral resolution ~ 8 μm depth resolution l = 632.8 nm (HeNe laser)

  15. MArtAMobile Art Analyser 20x LWD objective lens P. Vandenabeele, T.L. Weis, E.R. Grant, L.J. Moens, ABC 379 (2004) 137-142

  16. R T C M P D Raman signals XRF signals µ-XRF/µ-RAMAN Combined atomic and molecular spectrometry ultra-long working distance 50x objective lens lateral focus: ~ 5 mm; depth focus: ~ 8 mm + working distance: 2 cm → enough room for X-ray irradiation and detection

  17. XRF part of PRAXISBeam size/intensity • 8-10 mm WD for X-ray lens • Two lenses were produced • and evaluated • IfG Lens Praxis-7 • XOS Lens 2727 • Both lenses have identical focal distances/length, • i.e., they are interchangeable • Beam size 10 keV 17 keV • @ 17 keV Gain Gain • IFG Praxis-7 ~ 40 μm 2500 2500 • XOS 2727 ~ 25 μm ~2000 Mo X-ray tube

  18. µ-XRF/µ-RAMAN 3D CAD views University of Antwerp, B Institut für Gerätebau, Berlin, DJobin-Yvon S.A., Lille, F Bottom view T P C E D R R D D P: Polycapillary lens T: X-ray tube D: Drift-chamber XRF-detector C: Centerpiece (Al) E: Endoscope R: Raman head M: ULWD microscope objective E M Side view

  19. PRAXISCurrent Outlook of combined instrument Raman spectra with and w/o XRF: identical Raman spectra with and w/o endoscope: identical XRF spectra with and w/o Laser: identical sample stage

  20. Ca Zn Fe Ti Sr Zr Ni Ge Cr Rb Y 500 ppm of transition elements PRAXISTrace elements in Glass: MDLs unfiltered conditions

  21. Ca Zn Fe Ti Sr Zr Ni Ge Cr Rb Y 500 ppm of transition elements PRAXISUse of 12.5 μm Mo filter to improve MDLs μ-XRF (filtered): 10 ppm MDLs PRAXIS (unfiltered): 40 ppm MDLs

  22. µ-XRF/µ-RAMAN • Combined use on a ‘Test’ icon • painted panel • egg-tempera-based paints • traditional substrate material • mostly traditional pigments • a few ‘modern’ pigments • known paint layer order “Byzantine style” Icon, Chalkidiki, Greece (Ormylia Art Diagnostics Centre)

  23. White rim of Christ’s halo Fe Ti Ca Cu Pb Pb rutile – TiO2Ti-white Mn 407 1350 615 289 hematite µ-XRF/µ-RAMAN Yellow-brown Fe Ca Ti ? Brown-red lines Fe Cu Mn Ca Ti Byzantine style Icon, OADC, Chalkidiki, Greece

  24. µ-XRF/µ-RAMAN Red gowns 252 Ca S Pb 343 Pb Pb Hg Hg cinnabar Red blood stains Ti Cd Fe 298 Pb S Pb Ca Se cadmium red Cadmium red + Ti-white + Carbon-black Byzantine style Icon, OADC, Chalkidiki, Greece

  25. µ-XRF/µ-RAMAN Dark blue background Cu 1098 403 Fe 250 Pb Pb carbonblack S azurite Co Mn Blue sleeve of Virgin Mary Ca Fe Ti Pb S Pb Si Mn ultramarine no Co, no Cu Byzantine style Icon, OADC, Chalkidiki, Greece

  26. µ-XRF/µ-RAMAN Brown background Ca Mn Fe Pb Pb Ti hematite umber ? Dark green background Ca Mn ? Fe Pb Pb Cr carbon black no Cu Cr-green l = 632.8 nm (HeNe laser) Byzantine style Icon, OADC, Chalkidiki, Greece

  27. PbS Fe Pb Pb Zn Ca Pb Si(?) no Co, no Cu µ-XRF/µ-RAMAN Ca, Fe 796 251 1086 545 Na8..10Al6Si6O24S2..4 Cr, Co Hg,Pb

  28. PbS Fe Pb Zn Pb Ca Pb Hg µ-XRF/µ-RAMAN Cinnabar 252 343 Ca, Fe Cr, Co Hg, Pb

  29. µ-XRF/µ-RAMAN paint layer cross-section varnish (10-40 μm) [FTIR] Red lake (20 μm) [FTIR] lead white (10-15 μm) minium + caput mortuum + cinnabar (10-20 μm) caput mortuum + carbon black (10 μm) yellow bole base (0-5 μm) preparation layer (gesso) 1064 nm, Bruker 100 FT-Raman, UCL, UK 632 nm Renishaw 1000, Ormylia, Greece ‘Our Lady, the Life-giving Spring’ (1534) Saint Modestos’s Church in Kalamitsi, Chalkidiki, Greece S. Daniilia et al., J. Raman Spectrosc. 2002; 33: 807–814

  30. Fe Hg Fe 1350 Ca 407 Pb S Pb 615 289 Fe Ca S Pb Pb µ-RAMAN/µ-XRF paint layercross-section 1350 289 615 407 caput mortuum + cinnabar 252 caput mortuum 1052 CO3-2 gesso (chalk)

  31. µ-RAMAN/µ-XRF paint layercross-section no Raman SPb Pb Fe Pb 550 caput mortuum + minium + C-black Fe Pb Ca S Pb 252 341 cinnabar

  32. Bank security inks20 inks supplied by security firms 1 purple small bottle 2 purple small bottle 3 purple small bottle 4 dark pink/purple small bottle 5 dark pink/purple small bottle 6 dark pink/purple small bottle 7 dark pink/purple small bottle 8 purple small bottle 9 purple small bottle 10 pink-red small bottle 11 purple small bottle 12 grey-black small bottle 13 black small bottle 14 pink-red small bottle 15 dark blue small bottle 16 grey-black small bottle 17 pink-red small bottle 18 dark purple small bottle 19 black small bottle 20 red small bottle 21 purple   small bottle

  33. Bank security inksXRF part of PRAXIS SCl K Cu Cu SCl K Br Br Br Br Ho Pr Undoped ink SCl K Fe Cu Mn S La

  34. Bank security inksink-drops on glass slides purple purple methyl-violet purple • same colour • same line pattern • different P/B or other extra lines red

  35. PRAXIS IIa : SR-based instrument add remote Raman probe to SR beam line best quality data • PRAXIS IIb : Mobile instrument minimal sizeand weight limited quality PRAXIS I & IIcurrent/future activities • PRAXIS I : laboratory instrument Raman : 5 μm XRF: 25 μm depth-positioning: to within 3-5 μm

More Related