290 likes | 404 Views
Advanced Programming Andrew Black and Tim Sheard. Lecture 11 Parsing Combinators. Type of a Parser. data Parser a = Parser (String -> [(a,String)]) A function inside a data definition. The output is a list of successful parses. This type can be made into a monad
E N D
Advanced ProgrammingAndrew Black and Tim Sheard Lecture 11 Parsing Combinators
Type of a Parser data Parser a = Parser (String -> [(a,String)]) • A function inside a data definition. • The output is a list of successful parses. • This type can be made into a monad • A monad is the sequencing operator in Haskell. • Also be made into a Monad with zero and (++) or plus.
Defining the Monad Technical details, can be ignored when using combinators instance Monad Parser where return v = Parser (\inp -> [(v,inp)]) p >>= f = Parser (\inp -> concat [applyP (f v) out | (v,out) <- applyP p inp]) instance MonadPlus Parser where mzero = Parser (\inp -> []) mplus (Parser p) (Parser q) = Parser(\inp -> p inp ++ q inp) instance Functor Parser where . . . • where applyP undoes the constructor • applyP (Parser f) x = f x Note the comprehension syntax
Typical Parser • Because the parser is a monad we can use the Do syntax . do { x1 <- p1 ; x2 <- p2 ; ... ; xn <- pn ; f x1 x2 ... Xn }
Running the Parser • Running Parsers papply :: Parser a -> String -> [(a,String)] papply p = applyP (do {junk; p}) • junk skips over white space and comments. We'll see how to define it later
Simple Primitives applyP :: Parser a -> String -> [(a,String)] applyP (Parser p) = p item :: Parser Char item = Parser (\inp -> case inp of "" -> [] (x:xs) -> [(x,xs)]) sat :: (Char -> Bool) -> Parser Char sat p = do {x <- item; if p x then return x else mzero} ? papply item "abc" [('a',"bc")]
Examples ? papply item "abc" [('a',"bc")] ? papply (sat isDigit) "123" [('1',"23")] ? parse (sat isDigit) "abc" []
Useful Parsers char :: Char -> Parser Char char x = sat (x ==) digit :: Parser Int digit = do { x <- sat isDigit ; return (ord x - ord '0') } lower :: Parser Char lower = sat isLower upper :: Parser Char upper = sat isUpper
Examples char x = sat (x ==) ? papply (char 'z') "abc" [] ? papply (char 'a') "abc" [('a',"bc")] ? papply digit "123" [(1,"23")] ? papply upper "ABC" [('A',"BC")] ? papply lower "ABC" []
More Useful Parsers • letter :: Parser Char • letter = sat isAlpha • Can even use recursion • string :: String -> Parser String • string "" = return "" • string (x:xs) = • do {char x; string xs; return (x:xs) } • Helps define even more useful parsers • identifier :: Parser String • identifier = do {x <- lower • ; xs <- many alphanum • ; return (x:xs)} • What do you think many does?
Examples ? papply (string "tim") "tim is red" [("tim"," is red")] ? papply identifier "tim is blue" [("tim"," is blue")] ? papply identifier "x5W3 = 12" [("x5W3"," = 12")]
Choice -- 1 parser or another • Note that the ++ operator (from MonadPlus) gives non-deterministic choice. • instance MonadPlus Parser where • (Parser p) ++ (Parser q) • = Parser(\inp -> p inp ++ q inp) • Sometimes we’d like to prefer one choice over another, and take the second only if the first fails • We don’t we need an explicit sequencing operator because the monad sequencing plays that role.
Efficiency force :: Parser a -> Parser a force p = Parser (\ inp -> let x = applyP p inp in (fst (head x), snd (head x)) : (tail x) ) Deterministic Choice (+++) :: Parser a -> Parser a -> Parser a p +++ q = Parser(\inp -> case applyP (p `mplus` q) inp of [] -> [] (x:xs) -> [x])
Example • ? papply (string "x" +++ string "b") "abc" • [] • ? papply (string "x" +++ string "b") "bcd" • [("b","cd")]
Sequences (more recursion) many :: Parser a -> Parser [a] many p = force (many1 p +++ return []) many1 :: Parser a -> Parser [a] many1 p = do {x <- p ; xs <- many p ; return (x:xs)} sepby :: Parser a -> Parser b -> Parser [a] p `sepby` sep = (p `sepby1` sep) +++ return [] sepby1 :: Parser a -> Parser b -> Parser [a] p `sepby1` sep = do { x <- p ; xs <- many (do {sep; p}) ; return (x:xs) }
Example ? papply (many (char 'z')) "zzz234" [("zzz","234")] ? papply (sepby (char 'z') spaceP) "z z z 34" [("zzz"," 34")]
Sequences separated by operators chainl :: Parser a -> Parser (a -> a -> a) -> a -> Parser a chainl p op v = (p `chainl1` op) +++ return v chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a p `chainl1` op = do {x <- p; rest x } where rest x = do {f <- op; y <- p; rest (f x y)} +++ return x ? papply (chainl int (return (+)) 0) "1 3 4 abc" [(8,"abc")]
Tokens and Lexical Issues spaceP :: Parser () spaceP = do {many1 (sat isSpace); return ()} comment :: Parser () comment = do{string "--"; many (sat p); return ()} where p x = x /= '\n' junk :: Parser () junk = do {many (spaceP +++ comment); return ()} • A Token is any parser followed by optional white space or a comment token :: Parser a -> Parser a token p = do {v <- p; junk; return v}
Using Tokens symb :: String -> Parser String symb xs = token (string xs) ident :: [String] -> Parser String ident ks = do { x <- token identifier ; if (not (elem x ks)) then return x else zero } nat :: Parser Int nat = token natural natural :: Parser Int natural = digit `chainl1` return (\m n -> 10*m + n)
Example ? papply (token (char 'z')) "z 123" [('z',"123")] ? papply (symb "tim") "tim is cold" [("tim","is cold")] ? papply natural "123 abc" [(123," abc")] ? papply (many identifier) "x d3 23" [(["x"]," d3 23")] ? papply (many (token identifier)) "x d3 23" [(["x", "d3"],"23")]
More Parsers int :: Parser Int int = token integer integer :: Parser Int integer = (do {char '-’ ; n <- natural ; return (-n)}) +++ nat
Example: Parsing Expressions data Term = Add Term Term | Sub Term Term | Mult Term Term | Div Term Term | Const Int addop:: Parser(Term -> Term -> Term) addop = do {symb "+"; return Add} +++ do {symb "-"; return Sub} mulop:: Parser(Term -> Term -> Term) mulop = do {symb "*"; return Mult} +++ do {symb "/"; return Div}
Constructing a Parse tree expr :: Parser Term addop :: Parser (Term -> Term -> Term) mulop :: Parser (Term -> Term -> Term) expr = term `chainl1` addop term = factor `chainl1` mulop factor = (do { n <- token digit ; return (Const n)}) +++ (do {symb "(“ ; n <- expr ; symb ")“ ; return n}) ? papply expr "5 abc" [(Const 5,"abc")] ? papply expr "4 + 5 - 2" [(Sub (Add (Const 4) (Const 5))(Const 2),[])]
Array Based Parsers type Subword = (Int,Int) newtype P a = P (Array Int Char -> Subword -> [a]) unP (P z) = z emptyP :: P () emptyP = P f where f z (i,j) = [() | i == j] notchar :: Char -> P Char notchar s = P f where f z (i,j) = [z!j | i+1 == j, z!j /= s] charP :: Char -> P Char charP c = P f where f z (i,j) = [c | i+1 == j, z!j == c]
anychar :: P Char anychar = P f where f z (i,j) = [z!j | i+1 == j] anystring :: P(Int,Int) anystring = P f where f z (i,j) = [(i,j) | i <= j] symbol :: String -> P (Int,Int) symbol s = P f where f z (i,j) = if j-i == length s then [(i,j)| and [z!(i+k) == s!!(k-1) | k <-[1..(j-i)]]] else []
Combinators infixr 6 ||| (|||) :: P b -> P b -> P b (|||) (P r) (P q) = P f where f z (i,j) = r z (i,j) ++ q z (i,j) infix 8 <<< (<<<) :: (b -> c) -> P b -> P c (<<<) f (P q) = P h where h z (i,j) = map f (q z (i,j)) infixl 7 ~~~ (~~~) :: P(b -> c) -> P b -> P c (~~~) (P r) (P q) = P f where f z (i,j) = [f y | k <- [i..j], f <- r z (i,k), y <- q z (k,j)]
run :: String -> P b -> [b] run s (P ax) = ax (s2a s) (0,length s) s2a s = (array bounds (zip [1..] s)) where bounds = (1,length s) instance Monad P where return x = P(\ z (i,j) -> if i==j then [x] else []) (>>=) (P f) g = P h where h z (i,j) = concat[ unP (g a) z (k,j) | k <- [i..j] , a <- f z (i,k)]
Examples p1 = do { symbol "tim"; c <- anychar ; symbol "tom"; return c} ex4 = run "tim5tom" p1 ex5 = run "timtom" p1 Main> ex4 "5" Main> ex5 ""
Exercise in class • Write a parser for regular expressions