170 likes | 282 Views
Abstract Syntax. Language of l -expressions. <exp> ::= <identifier> | ( lambda ( <identifier> ) <exp> ) | ( <exp> <exp> ) E.g., concrete syntax Scheme S-expressions ( lambda (x) ( f ( f x ) ) ). Abstract Syntax ( vs Concrete Syntax ). lambda-exp. id. body.
E N D
Abstract Syntax L6AST
Language of l-expressions <exp> ::= <identifier> | (lambda( <identifier>)<exp>) | (<exp> <exp>) E.g.,concrete syntax Scheme S-expressions ( lambda (x) ( f ( f x ) ) ) L6AST
Abstract Syntax (vs Concrete Syntax) lambda-exp id body app-exp rand rator var-exp app-exp rator rand id var-exp var-exp id id L6AST
Overview Parse-expression Concrete Syntax Abstract Syntax Unparse-expression Interpreter Results L6AST
Representing Abstract Syntax with Records (define-datatype expression expression? (var-exp (id symbol?)) (lambda-exp (id symbol?) (body expression?)) (app-exp (rator expression?) (rand expression?))) L6AST
Parse: Concrete to Abstract Syntax (define parse-expression (lambda (datum) (cond ((symbol? datum) (var-exp datum)) ((pair? datum) (if (eqv? (car datum) 'lambda) (lambda-exp (caadr datum) (parse-expression (caddr datum))) (app-exp (parse-expression (car datum)) (parse-expression (cadr datum))) ) ) (else (eopl:error 'parse-expression "Invalid concrete syntax ~s" datum)) ))) L6AST
Example (Petite Scheme) > (current-directory “I:\\tkprasad\\cs784\\EOPL-CODE\\interps") > (load "chez-init.scm") > (load "2-2-2.scm") > (parse-expression 'x) (var-exp x) > (parse-expression '(lambda (x) (f x))) (lambda-exp x (app-exp (var-exp f) (var-exp x))) > (parse-expression 45) Error reported by parse-expression: Invalid concrete syntax 45 debug>e >(unparse-expression '(lambda-exp x (app-exp (var-exp f) (var-exp x)))) (lambda (x) (f x)) L6AST
Example (PLT Scheme) L6AST
Unparse: Abstract to Concrete Syntax (define unparse-expression (lambda (exp) (cases expression exp (var-exp (id) id) (lambda-exp (id body) (list 'lambda (list id) (unparse-expression body)) ) (app-exp (rator rand) (list (unparse-expression rator) (unparse-expression rand)) ) ))) L6AST
Role of Induction and Recursion • Define data structures (infinite values) by induction. • Seed elements. • Closure operations. • Define functions (operations) by recursion. • Boundary/Basis case. • Composite/Recursive case. • Prove properties using structural induction. • Basis case. • Inductive step. L6AST
Representing Environment L6AST
Alternative 1 (define empty-env (lambda () '())) (define extend-env (lambda (syms vals env) (cons (list syms vals) env) )) (define apply-env (lambda (env sym) (if (null? env) (eopl:error 'apply-env "No binding for ~s" sym) (let ((syms (car (car env))) (vals (cadr (car env))) (env (cdr env))) (let ((pos (rib-find-position sym syms))) (if (number? pos) (list-ref vals pos) (apply-env env sym))))) )) L6AST
Alternative 2 (define empty-env (lambda () (lambda (sym) (eopl:error 'apply-env "No binding for ~s" sym)) ) ) (define extend-env (lambda (syms vals env) (lambda (sym) (let ((pos (list-find-position sym syms))) (if (number? pos) (list-ref vals pos) (apply-env env sym)))) ) ) (define apply-env (lambda (env sym) (env sym) ) ) L6AST
Alternative 3 (define-datatype environment environment? (empty-env-record) (extended-env-record (syms (list-of symbol?)) (vals (list-of scheme-value?)) (env environment?))) (define scheme-value? (lambda (v) #t)) L6AST
(cont’d) (define empty-env (lambda () (empty-env-record) )) (define extend-env (lambda (syms vals env) (extended-env-record syms vals env))) (define apply-env (lambda (env sym) (cases environment env (empty-env-record () (eopl:error 'apply-env "No binding for ~s" sym)) (extended-env-record (syms vals env) (let ((pos (list-find-position sym syms))) (if (number? pos) (list-ref vals pos) (apply-env env sym)))) ) )) L6AST
Queue (define reset (lambda (q) (vector-ref q 0))) (define empty? (lambda (q) (vector-ref q 1))) (define enqueue (lambda (q) (vector-ref q 2))) (define dequeue (lambda (q) (vector-ref q 3))) (define Q (create-queue)) ((enqueue Q) 55) ((empty? Q)) ((dequeue Q)) ((empty? Q)) ((reset Q)) ((dequeue Q)) L6AST
(define create-queue (lambda () (let ((q-in '()) (q-out '())) (letrec ((reset-queue (lambda () (set! q-in '()) (set! q-out '())) ) (empty-queue? (lambda () (and (null? q-in) (null? q-out))) ) (enqueue (lambda (x) (set! q-in (cons x q-in))) ) (dequeue (lambda () (if (empty-queue?) (eopl:error 'dequeue "Not on an empty queue") (begin (if (null? q-out) (begin (set! q-out (reverse q-in)) (set! q-in '()))) (let ((ans (car q-out))) (set! q-out (cdr q-out)) ans))))) ) (vector reset-queue empty-queue? enqueue dequeue)) ))) L6AST