1 / 43

euhou

http://www.euhou.net. http://www.euhou.net. Hands-On Universe, Europe Bringing frontline interactive astronomy to the classroom. 8 European partners. Université Pierre et Marie Curie (France) - F-HOU Coordinator Philekpaideftiki Etaireia (Greece)

Download Presentation

euhou

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. http://www.euhou.net http://www.euhou.net

  2. Hands-On Universe, Europe Bringing frontline interactive astronomy to the classroom 8 European partners Université Pierre et Marie Curie (France) - F-HOU Coordinator Philekpaideftiki Etaireia (Greece) Fondazione IDIS – Citta Della Scienza (Italy) Centrum Fizyki Teoretycznej Polskiej Akademii Nauk (Poland) Nucleo Interactivo de Astronomia (Portugal) Universidad Complutense de Madrid (Spain) Onsala Space Observatory, Chalmers University (Sweden) Armagh Planetarium (United Kingdom)

  3. Overall objectives • Continuous production of new innovative pedagogical resources: users-friendly software, astronomical data, exercises, multimedia supports; trans-disciplinary in essence (astronomy, physics, mathematics, history, language...); available in English and in different languages. • Pedagogical use of worldwide telescope networks operated remotely via Internet. • New innovative observing tools (webcam system, radio-antenna...) to be used directly by pupils (at no cost). • Creation of a European network of researchers and middle/high school teachers for promotion of scientific and technological education; help to gear the education system to research and development. • web site with a free access multilingual portal to all available resources. • Dissemination through workshops and teacher training sessions.

  4. Web site : http://www.euhou.net • 1 European site and 8 national sites (http://www.fr.euhou.net/, etc.) • with a Content Management System (CMS). • Each site is composed of : + a public Web site • + an internal Web site/publication interface • + an administration interface • Hosted by the server of the project (located in the UPMC computing centre, daily back-up + baies RAID) Each partner is responsible of its national site.

  5. European interface

  6. National interface

  7. We are ready to welcome new partners within the web site

  8. Motivating to study science/maths/ICT/technology Cutting edge technology Cross-curricular, contribute to key skills Exciting and stimulating projects Student ownership of projects Thrill of real discovery INO Faulkes LCOGT Robotic Telescopes in Education Exciting Inspiring Educational Real time, real science

  9. Observing tools : Webcam system Skyview The Polish partner has designed and produced a low cost Webcam system which allows classrooms to perform themselves night observations. A complete software manual is available, together with pedagogical tools for studying, for instance, the variability of the brightest stars. About 20 teachers have received one in each country.

  10. Observing tools : Onsala radio telescope The Swedish partner has developped in Onsala a 2.3 m prototype radio telescope, dedicated to real time observations via Internet from classrooms. A complete manual for observing the 21 cm hydrogen line in the Milky Way is available. This radio telescope can be duplicated for 10 000 € (+1000€ for transportation)

  11. Observing tools : Jodrell Bank radio telescope In the frame of RADIONET/FP6-7 the 7 m radio telescope of Jodrell Bank is dedicated to real time observations via Internet from EU-HOU classrooms during 2 months. A complete set of educational material for observing the 21 cm hydrogen line in the Milky Way and local galaxies is available.

  12. Pedagogical resources : SalsaJ software Didactical software for image and data handling Such A Lovely Software for Astronomy, in Java • Multi-platform (Windows, Linux, Mac) • Java, modularity; easily extensible to implement new fonctionnalities • Adaptation in different languages; recently in arabic; chinese in progress • Free of charge (download from the EU-HOU web site) • Up to date sources (derived from the free medical research tool ImageJ developed at NIH); adapted to astronomy; friendly tool for classrooms Developed by F-HOU ; SalsaJ v2.0 to be released by the end of 2007

  13. SalsaJ: a multilingual interface

  14. Pedagogical resources : exercises Learning science by doing science: to propose hands-on activities based on real astronomical data, inspired from research: F-HOU: From the Doppler effect to extrasolar planets; distances to Cepheids Gr-HOU: The life of stars; stellar population It-HOU: How to weight a distant galaxy ? Pl-HOU: Webcam astronomy; variable stars; distances to Cepheids, etc. Pt-HOU: What is a star ? Se-HOU: Radio astronomy in the classroom; hydrogen in the Milky Way Sp-HOU: The solar system as a math laboratory UK-HOU: Voyage through space (EduSpace/ESA); Faulkes telescopes

  15. GOAL Introduce high school students to theoretical models in physics and astronomy Stellar model Stefan-Boltzmann’s law Planck’s law Wien’s law HR Diagram

  16. www.gr.euhou.net/

  17. SpectrJ: "Η Ζωή των Άστρων και τα Φάσματα τους"

  18. The Swedish contribution to EU-HOU: A Hands-On Radio Astronomy exercise Mapping the Milky Way using atomic hydrogen

  19. Hydrogen 21 cm line • Hydrogen (H) – the most abundant element in the universe • Abundant in our Galaxy • Atomic hydrogen in the ground state – hyperfine transition • The electron’s spin becomes anti-parallel to the proton’s • Radiation at 1420 MHz – 21 cm is emitted • Radio frequency – the atmospheric window is open

  20. Radio spectrum • Observations in the Galactic disc • The purple line: line-of-sight • Radio lines correspond to spiral arms

  21. Rotation Curve • Keplarian rotation (Solar system) • V~1/R • Solid body rotation (cdrom…) • V~R • Differential rotation (The Milky Way) • V=Constant Dark matter

  22. Dynamical effects • Astrometry • Radial • velocity • Timing

  23. MP sin i

  24. Virginis Time Time Elliptical orbit Circular orbit

  25. doublet du sodium

  26. 11 spectra

  27. Radial velocity curve as a function of time Vrad = V0+ W∙ cos ( 2pt/T + b) = 5,9 (km/s) + 23,2 (km/s) ∙ cos ( 2p tdays/(10,4days) + b) w V0 w T/2 = 5,2 days Kepler law ; m<<M m sin i ≈ (P/2πG)1/3 (Vrad)M2/3 (1 – e²)1/2

  28. • The black hole at the center of the Milky Way• Estimation of the Hubble constant

  29. How to weight a galaxy ?

  30. To weight a galaxy Dl / l = 2 vlongitudinal / c = 2 v sin(i) / c

  31. 1 pixel 0,82 arcsecs 39,7 Mpc Vitesse de rotation des bras autour du noyau de la galaxie : Le décalage spectral augmente à partir du noyau pour atteindre une valeur quasi constante v7 de 7 pixels lorsque la distance au centre du noyau dépasse 10 pixels. V7 = (7/7231). 3 .108 / (2 sin(53°)) = 181 km/s Distribution de masse et rayon d’action : Nous supposons une distribution homogène à symétrie sphérique, nous prenons r = 10 pixels (c’est notamment ce point que l’on peut discuter et que la version approfondie de l’exercice permettra d’améliorer). D’autre part, la galaxie est à 39,7 Mpc de distance 0,82 arcsecs/pixels ; 1 arcsec = p / (180.60.60) = 4,85. 10-6 rad ; 1pc = 3,09. 1016 m , d’où 1 pixel = angle en radian . distance en mètres 1 pixel = 0,82. 4,85 . 10-6. 3,09. 1016 . 39,7.106 m = 4,88.1018 m Estimation « mécanique » de la masse pour r ≈ 10 pixels M = v² r / G = ( 1,81.105)² . 4,88. 1019 / 6,67 . 10-11 M = [1,81².4,88/6,67] . 1040 kg ≈ 1040 kg M ≈ 1040 kg Ceci est bien l’ordre de grandeur des masses des galaxies ; la masse effective de la galaxie sera d’autant plus grande qu’on étendra r ; pour des calculs plus fins, voir la version approfondie de cet exercice.

  32. Dissemination : • Leaflets • Web site • Stages for students • TRA training sessions • Events

  33. « Human » solar system or Orrery Stages L3/UPMC at the Armagh Observatory (in English) Kepler laws Bethleem star Then, students can visit schools in France

  34. Dissemination : teacher training Training Resource Agents (TRA) are teachers eager to : ▪ learn about the various EU-HOU outputs ▪ adapt European resources to national curricula ▪ use them in their schools ▪ train other teachers/educators about the resources By the end of 2006, roughly 20 schools x 8 countries x 60 pupils more than 10 000 European pupils have used EU-HOU Training workshops in English were proposed to TRA (cost covered): almost 100 teachers Torun (Poland) 20-23 October 2005; OHP 9-12 March 2006; Napoli 21-24 September 2006. Plus national training.

  35. Thank you

More Related