1 / 43

OSCILLATION MEASUREMENT OF 133 Ba SOURCE Kishimoto Group

OSCILLATION MEASUREMENT OF 133 Ba SOURCE Kishimoto Group. Tran Thien Thanh Hu Jun Pham Tuan Anh Van Thi Thu Trang. Outline. Introduction Detector set up Energy resolution – Time resolution Selection of detector combination  -  correlation measurement Oscillation measurement

zahur
Download Presentation

OSCILLATION MEASUREMENT OF 133 Ba SOURCE Kishimoto Group

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. OSCILLATION MEASUREMENT OF 133Ba SOURCE Kishimoto Group • Tran Thien Thanh • Hu Jun • Pham Tuan Anh • Van Thi Thu Trang

  2. Outline • Introduction • Detector set up • Energy resolution – Time resolution • Selection of detector combination •  -  correlation measurement • Oscillation measurement • Discussion • Acknowledgement

  3. Outline • 1. What is gamma angular distribution? • 2. What is the aim of this measuring? • 3. How to measure?

  4. I1 γ1 θ γ1 I2 γ2 γ2 I3 1. What is gamma angular distribution? The angular distribution of mixed-multipole radiation Where: P_k: Legendre function

  5. 2. What is the aim of this measuring? • - To determine spin and parity of excited nuclear state

  6. 3. How to measure? • 3.1.Methods • 3.2. Choose source • 3.3. Choose detectors • 3.4. Circuit

  7. B 3. How to measure? • 3.1. Methods - Changing angle of detector (without B) - Using magnetic field D 2 D 1

  8. 3. How to measure? • Larmor precesion B S 1.4E8 rad/s --> T=40 ns

  9. 3. How to measure? • Why we choose Ba-133 source? M1+E2 356 keV 9ns E2 81 keV

  10. 3. How to measure? • 3.3. Detectors: • - NaI(Tl) • - CsI(Tl) • - Plastic scintillator • --> Choose detector with good time resolution

  11. 3. How to measure? TDC stop • 3.4. Circuit AMP ADC PMT L F I/O Disc Delay Coin GG Coin L Delay TFA Disc AMP ADC PMT L F I/O Disc Delay Coin GG L Delay Coin GG TDC start GG TFA Disc ADC gate

  12. 3. How to measure? 1 x 2 2000 1 600 2 TDC start 300+x 2 TDC stop 600 2 -300< x< 600

  13. E (KeV) Intensity (%) 53.1625 6 2.199 % 22 79.6139 13 2.62 % 6 80.9971 12 34.1 % 3 160.6109 17 0.645 % 8 223.2373 14 0.450 % 4 276.3997 13 7.164 % 22 302.8510 6 18.33 % 6 356.0134 6 62.05 % 19 383.8480 12 8.94 % 3

  14. Energy Resolution • For detectors which are designed to measure the energy of the incident radiation ,the most important factor is the energy resolution. Resolution=FWHM/E

  15. Detectors • NaI(Tl) +HV NaI(Tl) -HV • CsI(Tl) +HV CsI(Tl) -HV • Plastic +HV Plastic -HV  Sources 22Na  511keV & 1275keV 241Am  59.5keV 60Co  1173.2keV & 1332.5keV 137Cs  661.7keV 133Ba  81keV & 356keV

  16. Calibration NaI -HV E(keV)=0.108ch-12.069

  17. NaI –HV Energy Resolution(%) E(keV) R=aE-1/2

  18. CsI(Tl) NaI(Tl) Plastic Scintillator 22Na  511keV & 1275keV

  19. Conclusion • NaI(Tl) detectors have the best ennergy resolution, CsI(Tl) detectors are the second,Plastic Scintillators are the worst. However ,for the angular correlation measurement,there is another very important factor Time Resolution we must check.

  20. Time Calibration T(ns)=0.59ch-36.6

  21. Selection of Detector Combination NaI(Tl) +HV Plastic -HV NaI(Tl) +HV Plastic +HV NaI(Tl) +HV NaI(Tl) -HV NaI(Tl) -HV Plastic -HV Plastic +HV Plastic -HV Plastic +HV NaI(Tl) -HV We don’t use the CsI(Tl) detector,beause its time constant is too long,the time resolution will be bad.

  22. NaI(Tl) +HV Plastic -HV FWHM=6.92ns 22Na  511keV & 1275keV

  23. NaI(Tl) +HV NaI(Tl) -HV FWHM=6.61ns 22Na  511keV & 1275keV

  24. Plastic +HV Plastic -HV 22Na  511keV & 1275keV

  25. Plastic +HV NaI(Tl) -HV FWHM=3.13ns 22Na  511keV & 1275keV

  26. NaI(Tl) -HV Plastic -HV FWHM=2.14ns 22Na  511keV & 1275keV

  27. Time Resolution NaI(Tl) +HV 6.63ns NaI(Tl) -HV 0.63ns Plastic +HV 3.68ns Plastic -HV 1.96ns The best combination is NaI(Tl) -HV and Plastic -HV . We selected the best combination ,then we would measure the angular correlation.

  28.  -  correlation measurement

  29.  -  correlation measurement (cont)

  30.  -  correlation measurement (cont)

  31. Oscillation measurement

  32. B  0 B = 0 Oscillation measurement Measurement at Angular 45

  33. Measurement at Angular 90

  34. B  0 B = 0 E B = 0 E B  0 Oscillation measurement (cont) Zeeman Splitting

  35. B  0 B = 0 E B = 0 E B  0 Oscillation measurement (cont)

  36. Oscillation measurement (cont)

  37. Oscillation measurement (cont) * : Obsevation of non – exponential orbital electron capture of Hydro – like 140Pr and 142Pm ions (YU.A. Litvitov et al 2008)

  38. Oscillation measurement (cont)

  39. Chisquare 7.3 Chisquare 7.7 Chisquare 8.3 Oscillation measurement (cont)

  40. Discussion • Combination Na(minus) and Plastic (minus) for time resolution is the best • Calculate coefficient angular correlation A2 = -0.1289 • Determination coefficient k = 7.7 is the best to oscillation by minimum chisquare

  41. Acknowledgement • Osaka University • Prof Nomachi • Prof Kishimoto • Kishimoto group

  42. THANK YOU FOR ATTENTION

More Related