1 / 45

Power-law banded random matrices: a testing ground for the Anderson transition

Power-law banded random matrices: a testing ground for the Anderson transition. Imre Varga Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem, Magyarország. Imre Varga Department of Theoretical Physics Budapest University of Technology and Economics, Hungary.

zalman
Download Presentation

Power-law banded random matrices: a testing ground for the Anderson transition

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Power-law banded random matrices:a testing ground for the Anderson transition Imre Varga Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem, Magyarország Imre Varga Department of Theoretical Physics Budapest University of Technology and Economics,Hungary collaborators: Daniel Braun (Toulouse) TsampikosKottos (Middletown, CT) José Antonio MéndezBermúdez (Puebla) Stefan Kettemann (Bremen, Pohang), Eduardo Mucciolo (Orlando, FL) thanks to: V.Kravtsov, B.Shapiro, A.Ossipov, A.Garcia-Garcia, Th.Seligman, A.Mirlin, I.Lerner, Y.Fyodorov, F.Evers, B.Eckhardt, U.Smilansky, etc. also to AvH, OTKA, CiC, Conacyt, DFG, etc.

  2. Outline • Introduction • Anderson transition • Intermediate statistics • PBRM and the MIT • Spectral statistics, multifractalstates • New results with PBRM at criticality • Scattering • Wave packet dynamics • Entanglement • Magnetic impurities • Summary

  3. Anderson model (1958) • Hamiltonian: • Energies enare uncorrelated, random numbers from uniform (bimodal, Gaussian, Cauchy, etc.) distribution  W • Nearest-neighbor hopping  V (symmetry: , , ) • Bloch states for W V, localized states for W  V  W V??

  4. One-parameter scaling (1979) Two energy (time) scales:ETh and D (tD and tH) g = ETh/D = tH/tD Gell-Mann – Low function Metal – insulator transition (MIT) for d>2.

  5. Mobility edge (d=3) Density of states Conductivity Localized wave functions

  6. A non-interacting electron moving in random potential Quantum interference of scattering waves Anderson localization of electrons extended localized localized localized E Ec extended critical

  7. Spectral statistics (d=3) MIT Zharekeshev ‘96

  8. Spectral statistics (d=3) • W <Wc • extended states • RMT-like • W > Wc • localized states • Poisson-like • W = Wc • multifractal states • intermediate ‘mermaid’

  9. Anderson - MIT • Dependence on symmetry parameter  superscalingrelation thru parameter g with and are the RMT limit IV, Hofstetter, Pipek ’99

  10. Eigenstates for weak and strong W extended state weak disorder, band center localized state strong disorder, band edge (L=240) R.A.Römer

  11. Multifractality at the MIT (3d) Inverse participation numbers • higher accuracy • scaling with L • Box counting technique • fixed L • state-to-state fluctuations http://en.wikipedia.org/wiki/Metal-insulator_transition (L=240) R.A.Römer

  12. Multifraktál állapotok a valóságban LDOS fluktuációk a fém-szigetelő átalakulás közelében Ga1-xMnxAs-ban

  13. In a metal : anomalous scaling dimensions Multifractality:scaling behavior of moments of (critical) wave functions Critical wave function at a metal-insulator transition point multifractal exponents fractal dimension Continuous set of independent and universal critical exponents singularity spectrum : measure of r where

  14. Unusual features of the MIT (3d) • Interplay of eigenvector and spectral statistics • Chalkeret al. ‘95 • Anomalous diffusion at the MIT • Huckesteinet al. ‘97 • Correlation dimension • strong probability overlap (Chalker ’88) • LDOSvs wave function fluctuations • Huckesteinet al. ‘97

  15. Unusual features of the MIT (3d) Detect the MIT using a stopwatch! Kottos and Weiss ‘02; Weiss, et al. ‘06

  16. PBRM: Power-law Band Random Matrix • Model: matrix with and • asymptotically • parameters: and

  17. PBRM • for  RMT, as if • for 1/2 < a < 1  similar to metal with d=1/(a-1/2) • for  BRM Poisson, as if • for a > 3/2 power law localization with exponent a (cf. Yeung-Oono ‘87) • for  criticality (cf. Levitov ‘90) • no mobility edge! • continuous line of transitions: b

  18. PBRM transition Cuevas et al.‘01 • asymmetric transition • Kosterlitz-Thouless Kottos and IV ‘01 (unpub.)

  19. PBRM at criticality ( ) • for b  1non-linear s-model RG, SUSY(Mirlin‘00) • large conductance: g*=4bb • for b  1 real-space RG, virial expansion, SUSY(Levitov‘99, Yevtushenko-Kravtsov‘03, Yevtushenko-Ossipov ‘07) Mirlin‘00

  20. PBRMatcriticality – DOS ( ) b=10.0 b=0.1 b=1.0 L=1024

  21. PBRM at criticality (b=1) semi-Poisson statistics is qualitatively valid only IV and Braun ‘00

  22. joint distribution state-to-state fluctuation β = 1 β = 2 IV ‘02

  23. How does multifractality show up? • Scattering (1 lead) • LDOSvs wave function fluctuations • Anomalous diffusion at the MIT • Nature of entanglement • Screening of magnetic impurities

  24. Open system: PBRM + 1 lead • scattering matrix • Wigner delay time • resonance width, eigenvalues of poles of

  25. Perfect coupling • distribution of phasesfor b > 1: with • perfect coupling achieved:

  26. Scattering: PBRM + 1 lead • JA Méndez-Bermúdez – Kottos ‘05 Ossipov – Fyodorov ‘05: • JA Méndez-Bermúdez – IV06: Measure multifractality using a stopwatch!

  27. Wave function and LDOS Wave functions LDOS J.A. Méndez-Bermúdezand IV ‘08 (in prep.)

  28. Wave function and LDOS J.A. Méndez-Bermúdezand IV ‘08 (in prep.)

  29. Wave packet dynamics survival probability asymptotic wave packet profile J.A. Méndez-Bermúdezand IV ‘08(in prep.)

  30. Wave packet dynamics effective dimensionality changes J. A. Méndez-Bermúdezand IV ‘08 (in prep.)

  31. B A Entanglement at criticality • 1 qubit in a tight-binding lattice site iwith or without an electron: A • 2 qubits in a tight-binding lattice site iand j with or without an electron: A i • concurrence [Wootters (1997)] (bipartite systems) • tangle [Meyer and Wallach (2002)] (multipartite) i j B A A IV and JAMéndez-Bermúdez ‘08

  32. Entanglement at criticality Average concurrence in an eigenstate b=0.3 Average tangle where M=N(N-1)/2and IPR of state IV and JA Méndez-Bermúdez ‘08

  33. Entanglement at criticality IV and JAMéndez-Bermúdez ‘08 (cf. Kopp et al. ’07; Jiaet al. ’08)

  34. Kondo effektus fémben (1964) T < TKalatt spin-flip szórás, szinglet alapállapot, Kondo-árnyékolás

  35. Kondo effektus rendezetlen fémben TK helyfüggő P(TK) széles, bimodális 1-hurok (Nagaoka – Suhl): Árnyékolatlan (szabad) mágneses momentumok, ha Szigetelő: Kissé rendezetlen vezető:

  36. Kondo effektus a kritikus pontban lognormális hullámfüggvény eloszlás hullámfüggvény intenzitások együttes eloszlása hullámfüggvények energiakorrelációja

  37. Kondo effektus a kritikus pont körül A mágneses momentumok közül pontosan egy szabad: A kritikus pontban nincsenek szabad momentumok A szigetelő oldalon: A kritikus ponttól távolodva léteznek szabad momentumok

  38. A fém-szigetelő átalakulás szimmetriája Kritikus pont szimmetria függő: esetén

  39. Magnetic impurity S Kettemann, E Mucciolo, IV ‘09

  40.  

  41. Summary • PBRM: a good testing ground for the Anderson transition • d=1→ scaling with L • no mobility edge (!) • features similar to Anderson MIT → deviations found • tunable transition → bserve as 1/d or g • multifractal states induce unusual behavior • Scattering • Wave packet dynamics • Entanglement • Interplay with magnetic impurities • Outlook • Effect of interactions on the HF level • Dynamical stability versus chaotic environment Thankyouforyourattention

  42. Outlook: Current and future problems • free magnetic moments + e-e interactions • S. Kettemann (Hamburg) • E. Mucciolo(Orlando) • interplay of multifractality and interaction • decoherence of qubits in critical environment • Th. Seligman (Cuernavaca) • J.A. Méndez-Bermúdez (Puebla)

More Related