1 / 20

A Preferential Tableau for Circumscriptive ALCO

A Preferential Tableau for Circumscriptive ALCO. RR 2009 Stephan Grimm Pascal Hitzler. Outline. Circumscriptive Description Logics (DLs) Preferential Tableau Example of calculating preferred models Conclusion. Circumscriptive DLs. DLs with circumscription

zarola
Download Presentation

A Preferential Tableau for Circumscriptive ALCO

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Preferential Tableau forCircumscriptive ALCO RR 2009 Stephan Grimm Pascal Hitzler

  2. Outline • Circumscriptive Description Logics (DLs) • Preferential Tableau • Exampleofcalculatingpreferredmodels • Conclusion

  3. Circumscriptive DLs • DLs withcircumscription • Circumscription (minimisingextensionsofpredicates) [McCarthy] • Combinationwith DLs (minimisingextensionsofconcepts/roles) [Bonatti,Lutz,Wolter] • Nospecificreasoningalgorithmsexist • Minimisationofpredicates • Keep extensionsofselectedpredicatesassmallaspossible • Allowsfornonmonotonicreasoninganddefeasibleinference • Appearanceofcircumscriptive DLs • CircumscriptionPattern CPfor a knowledgebaseKBCP = (M, V, F) circCP(KB)

  4. comparing interpretations by their extensions for minimized predicates Semantics of Circumscriptive DL • Preference relation <CP on Interpretations I = (I, I) • models of circCP(KB) are <CP-minimal models of KB,i.e. the preferred models of KB w.r.t. CP.

  5. Reasoning with Circumscribed KBs • Various forms of defeasible reasoning • defined with respect to (preferred) models of circCP(KB) • Concept Satisfiability A concept C is satisfiable w.r.t. circCP(KB)if some model of circCP(KB) satisfies CI • Subsumption C⊑ D holds w.r.t. circCP(KB) if CIDI holdsfor all models I of circCP(KB) • Entailment circCP(KB) ⊨C(a) holds if a  CI holdsfor all models I of circCP(KB)

  6. ExampleforCircumscriptiveReasoning • Nonmonotonicreasoningexample • Default behaviour due toconceptminimisation

  7. Preferential Tableau • Tableau toconstructpreferredmodels • Formalismconsidered: parallel conceptcircumscription in generalALCO knowledgebases • Extension ofclassicaltableaux • Additional check forpreferenceclashes • A tableaubranchcontains a preferenceclashifitrepresents non-preferredmodels • Implementationofpreferenceclash check • Reduce check toclassicalreasoningproblem (KB satisfiability in ALCO) • Constructtemporaryknowledgebase KB´ out of original KB andassertions in tableaubranch B, such that • Models of KB´ arepreferredoverthoserepresentedby B

  8. Algorithm for Constructing KB´ • Constructing KB´ forpreferenceclash check

  9. CP=( M={AbEUCity}, F=, V={EUCity} ) x :EUCity x :cur.{Euro} x:  EUCity x : AbEUCity  ⇜ x :cur.{Euro}   Example Preferential Tableau KB = { EUCity ⊑cur.{Euro} ⊔AbEUCity } • tableaux algorithm constructs a model for KB • tableaux branches represent (potential) models of KB • clashes represent contradictions in KB • eliminate non-preferred models by introducing additional preference clashes • preference clashes indicate non-minimality KB ⊨ EUCity ⊑cur.{Euro} ?

  10. x :EUCity x :cur.{Euro}  KB ’ = { EUCity ⊑cur.{Euro} ⊔AbEUCity,AbEUCity ⊑ {x} , ( AbEUCity ⊓{x}) () } x: AbEUCity AbEUCity x consistent Example Preference Clash Detection • collect positive assertions to minimised concepts • freeze extensions of minimised conceptsKB’ = KB { AbEUCity ⊑ {x} } • ensure minimalitycondition in KB’ KB’ ( AbEUCity ⊓{x}) ()new individual • test KB’ for consistencyKB’ is consistent  ℬ has a preference clash

  11. Conclusion • Results • Tableau calculusforcircumscriptive ALCO • Proofedsoundandcomplete • Extension ofclassical DL tableaubypreferenceclash • Criterionforpreferenceclash check on tableaubranches • Can beappliedto open andclosedtableaubranches • Can beintegratedintoexisting (optimised) tableauimplementations • Future work • Extension tomore expressive DLs • Integration into open-sourcetableauimplementationsfortesting • Optimisationstocopewithhighcomplexity

  12. Assumption: Pizzas with non-chili toppings only are typically non-spicy Defeasible Inference • Inferences in OWL are universally true • based on description logics (monotonic) • conclusions only drawn from ensured evidence (OWA) • Defeasible Inferences are based on common-sense conjectures • conclusions drawn based on assumptions about what typically holds • retracted in the presence of counter-evidence • Example

  13. Circumscriptive DLs • DLs with circumscription • minimising extensions of DL-predicates [Bonatti,Lutz] • Circumscription Pattern CP for a knowledge base KB • Model-theoretic semantics • Preference relation <CP on Interpretations • only models minimal w.r.t. <CP remain models of

  14. KB  {fa,fb}  {fc}  . . . Semantic Web KB ⊨ {fa, fb, fc, fx, fy, ... } KB ⊨{fa,fb} KB  {fc,fd} ⊨{fa,fb,fc,fd} KB  {fc} ⊨{fa,fb,fc,fd} non-monotonic Agent Agent KB  {fc,fd,fe} ⊨{fc,fd} . . . (Non-)MonotonicityofReasoning • Agent collects knowledge in the web • Reasoning allows to derive implicit knowledge • Reasoning is monotonic if the derived knowledge monotonically grows t

  15. KB = {Pizza(vesufo), hasTopping(vesufo,salami)} ? KB ⊨ SpicyDish(vesufo) KB ⊭ {SpicyDish(vesufo), hasTopping(vesufo,chili)}  KB ⊨ SpicyDish(vesufo) Agent Non-Monotonicityfor Common-Sense • Situationsofincompleteknowledge • Pragmatic conclusionsbydefaultassumptions • Admitthejumpingtoconclusions KB {x : hasTopping(x,salami)  SpicyDish(x)} ⊨ SpicyDish(vesufo)

  16. I Concept Individual Course Student susan cs324 enrolled susan Student I cs324 Role enrolled cs324 susan CourseI Student Student Graduate enrolled susan susan cs324 Interpretations and Models in DL • I= (I,·I) • Iis a model ofKBif it satisfies ist axioms

  17. . . . models ofKB Concept Minimisation • Trade models for conclusions • the less models the more conclusion • nonmonotonicity: regain models by learning new knowledge • Example

  18. CP=( M={AbEUCity}, F=, V={EUCity} ) Berlin :EUCity Berlin :cur.{Euro} Berlin :  EUCity Berlin : AbEUCity  ⇜ Berlin :cur.{Euro}   Example Preferential Tableau KB = { EUCity ⊑cur.{Euro} ⊔AbEUCity , EUCity(Berlin)} • tableaux algorithm constructs a model for KB • tableaux branches represent (potential) models of KB • clashes represent contradictions in KB • eliminate non-preferred models by introducing additional preference clashes • preference clashes indicate non-minimality KB ⊨ cur.{Euro}(Berlin) ?

  19. Berlin :EUCity Berlin :cur.{Euro}  KB ’ = { EUCity ⊑cur.{Euro} ⊔AbEUCity, EUCity(Berlin) ,AbEUCity ⊑ {Berlin} , ( AbEUCity ⊓{Berlin}) () } Berlin : AbEUCity AbEUCity Berlin consistent Example Preference Clash Detection • collect positive assertions to minimised concepts • freeze extensions of minimised conceptsKB’ = KB { AbEUCity ⊑ {Berlin} } • ensure minimalitycondition in KB’ KB’ ( AbEUCity ⊓{Berlin}) ()new individual • test KB’ for consistencyKB’ is consistent  ℬ has a preference clash

More Related