1 / 46

Chapter 4

Chapter 4. Exponents and Polynomials. Chapter 4.1. The Rules of Exponents. The Product Rule. x a • x b. x a + b. =. 1. Multiply. a 7. a 5. •. a. a 7 + 5. a 12. •. a • a • a • a • a. a • a • a • a • a • a • a. Count how many you are multiplying.

zeph-chaney
Download Presentation

Chapter 4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 4 Exponents and Polynomials

  2. Chapter 4.1 The Rules of Exponents

  3. The Product Rule xa• xb xa +b =

  4. 1. Multiply. a7 a5 • a. a7 + 5 a12 • a • a • a • a • a a • a • a • a • a • a • a Count how many you are multiplying. Just add the exponents.

  5. 1. Multiply. b. w10 • w w10 + 1 w11 Add the exponents.

  6. 2. Simplify, if possible. a. x3 • x9 x3 + 9 x12 Same base, add the exponents.

  7. 2. Simplify, if possible. b. 37 • 34 37 + 4 311 Same base, add the exponents.

  8. 2. Simplify, if possible. c. a3 • b2 a3b2 Different bases, can’t use the product rule.

  9. 3. Multiply. a. (-a8)(a4) a8 + 4 (-1)(1) a12 - Multiply the coefficients. Add the exponents.

  10. 3. Multiply. b. (3y2)(-2y3) (3)(-2) y2 + 3 -6 y5 Multiply the coefficients. Add the exponents.

  11. 3. Multiply. c. (-4x3)(-5x2) (-4)(-5) x3 + 2 x5 20 Multiply the coefficients. Add the exponents.

  12. 4. Multiply. x x2 - y3 ( x 2 6 ) )( )( y y 1 3 (2)(-)(6) (y1 + 1 + 3) (x1 + 2 + 1) 2 1 -3 y5 x4 Multiply and simplify the coefficients. Add the exponents for x and then for y.

  13. The Product Rule xa• xb xa +b =

  14. The Quotient Rules xa xa xa 1 = xa –b if a > b 1. xa xb xb 2. = if b > a 3. = x0 = 1 xb –a

  15. The Quotient Rules xa = xa –b if a > b 1. xb

  16. 5. Divide. 1013 a. 107 1013 – 7 106 10 • 10 • 10 • 10 • 10 • 10 • 10 • 10 • 10 • 10 • 10 • 10 • 10 10 • 10 • 10 • 10 • 10 • 10 • 10 Count how many are crossed out. Just subtract the exponents.

  17. 5. Divide. b. x11 x x11 – 1 x10 Higher exponent in numerator. Subtract the exponents.

  18. 5. Divide. c. y18 y8 y18 – 8 y10 Higher exponent in numerator. Subtract the exponents.

  19. The Quotient Rules xa xa 1 = xa –b if a > b 1. xb xb 2. = if b > a xb –a

  20. 6. Divide. c3 a. 1 1 c4 c c4 – 3 c• c• c c• c• c• c The higher exponent is in the denominator.

  21. 6. Divide. b. 1 1031 1 1056 – 31 1056 1025 The higher exponent is in the denominator.

  22. 6. Divide. c. 1 1 z15 z6 z21 – 15 z21 The higher exponent is in the denominator.

  23. 7. Divide. x7 -7 a. 1 -21 x9 3x2 1 3 x9 – 7 Simplify. The higher exponent is in the denominator.

  24. 7. Divide. x11 15 b. -3 x4 -5 x11 – 4 1 -5x7 Simplify. The higher exponent is in the numerator.

  25. 7. Divide. x8 23 c. 1 46 x9 2x 1 2 x9 – 8 Simplify. The higher exponent is in the denominator.

  26. 8. Divide. x7 y9 a. y10 x7 y10 – 9 x7 y Can’t simplify. The higher exponent is in the denominator.

  27. 8. Divide. y6 12 x5 b. -24 x3 y8 x5 – 3 -1 2 y8 – 6 -x2 2y2 Simplify. The higher exponent is in the numerator. The higher exponent is in the denominator.

  28. The Quotient Rules xa xa xa 1 = xa –b if a > b 1. xa xb xb 2. = if b > a 3. = x0 = 1 xb –a

  29. 9. Divide. a. = 100 107 107 1 Same exponent.

  30. 9. Divide. 12 a4 b. 15 a4 4 5 Simplify. Same exponent.

  31. 10. Divide. -20 a3 b8 c4 a. -5b a3 b7 c5 28 7c b8 – 7 -5 7 c5 – 4 Simplify. Same exponent. The higher exponent is in the numerator. The higher exponent is in the denominator.

  32. 10. Divide. 5 x0 y6 b. 1 x4 y8 10 2x4y2 1 2 y8– 6 x4 Simplify. 0 exponent. The higher exponent is in the denominator.

  33. 11. Simplify. ( 3 )( ) a2 b4 -6 a b5 16a5b7 a3 -18 b9 16 a5 b7 b2 -9 Multiply. 8 a2 Add the exponents in the numerator. Simplify. Subtract the exponents.

  34. The Quotient Rules xa xa xa 1 = xa –b if a > b 1. xa xb xb 2. = if b > a 3. = x0 = 1 xb –a

  35. The Power Rules xa (xa)b xa •b = yb = (xayb)c xa •c yb•c xa • c = yb• c ( ) c

  36. 12. Simplify. a. (a4)3 a4 • 3 a12 (a4)(a4)(a4) Can write it three times. Add 4 three timesor multiply the exponents.

  37. 12. Simplify. b. (105)2 105• 2 1010 Multiply the exponents.

  38. 12. Simplify. c. (-1)15 -1 Multiply -1 an odd number (15) of times.

  39. 13. Simplify. a. (3xy)3 (3)3 x1 • 3 y1 • 3 27 x3 y3 Keep 3 in the parentheses. Multiply the exponents. Evaluate each.

  40. 13. Simplify. b. (yz)37 y1 • 37 z1 • 37 y37 z37 Multiply the exponents. Evaluate each.

  41. 13. Simplify. c. (-3x3)2 (-3)2 x3• 2 9 x6 Keep -3 in the parentheses. Multiply the exponents. Evaluate each.

  42. 14. Simplify. x a. ( )3 5 x3 (5)3 x3 125 Multiply the exponents. Keep 5 in the parentheses. Evaluate.

  43. 14. Simplify. b. ( ) 4 a 2 a ) b ( 6 a2 16 a6 b6 16 a4 b6 Evaluate. Multiply exponents. Use quotient rule and subtract exponents.

  44. 15. Simplify. -2 x3 y0 z ( )5 x z2 4 -1 x2 ( ) 5 z 2 - x10 z5 32 Work inside parentheses. Simplify and use quotient rules. Use power rule and evaluate.

  45. The Power Rules xa (xa)b xa •b = yb = (xayb)c xa •c yb•c xa • c = yb• c ( ) c

  46. Chapter 4.1 The Rules of Exponents

More Related