1 / 22

Rare B decays at LHCb

DISCRETE '08,   11–16 December 2008, València. Rare B decays at LHCb. Hugo Ruiz On behalf of the LHCb Collaboration. Institut de Ciències del Cosmos. Introduction. In the SM, b  s only through loops (FCNC) which implies: Processes are rare

zev
Download Presentation

Rare B decays at LHCb

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. DISCRETE '08,   11–16 December 2008, València Rare B decays at LHCb Hugo Ruiz On behalf of the LHCb Collaboration Institut de Ciències del Cosmos

  2. Introduction • In the SM, b  s only through loops (FCNC) which implies: • Processes are rare • Powerful to find/constrain NP! • Operator Product Expansion allows parametrizing effect of new physics throughout different b  s observables : • Observables are functions of C’s. • Branching ratios (BR) • Polarizations • Angular distributions • Three examples for LHCb: B0  K*(K+p-)m+m- Bs  f(K+K-)g Bs m+m-

  3. Three interesting rare decays t m+ m+ m+ g g Z, Z, m- m- m- NP? in @ LHCb BR(SM) BR exp Bsfg g polarization • (57+18-12+12-11) 10-6 Belle’08 Largetheory errors on exclusive BRs angular distributions (1.22+0.38-0.32)·10-6 B factories B0K*m+m- TeVatron @ 90% CL (2 fb-1) < 4510-9 (3.35±0.32)·10-9 helicity suppressed BR Bsm+m-

  4. LHCb overview VELO: s(IP) ~ 14mm + 35mm/pT s(t) ~ 40-100 fs L = 2(5)·1032 , 2fb-1/year 10 MHz visible interaction 10 KHz bb (1012 bb / year) Tracking: e = 95% p>5 GeV, 1.9<h<4.9 s(p)/p ~ (0.4 + 1.5 p/TeV)% s(m[Bs →mm]) ~ 20 MeV s(m[K*m+m-]) ~ 15 MeV ECAL: s(E)/E ~ (9.4/√E ⊕ 0.83)% s(m[Bs → fg]): 90 MeV MC: Full sim, pile-up & spillover Photos for FSR in signal Muon, RICH: k-ID: 88% for 3% p misID m-ID: 95% for 5% p/k misID

  5. Bs  fg

  6. g polarization in Bs  fg • SM @ LO: O7 B0XsgR, B0XsgL, tan y AR/AL~ ms/mb ~ 0 • NLO (gluon interchange, etc..) tan y ~ 0.1[1] • SM extensions (left-right-symmetric [2] , unconstrained MSSM [3]) predict large tan y while no change on inclusive BR (bsg) • Interference mixing-decay gives access to g polarization: • In the SM: C=0, S=sin 2y sin f, AΔ=sin 2y cos f, cos f  1(mix + CP odd weak phases) • B-factories: ACP@ BdK*(Ksπ0)g:C=-0.03±0.14, S=-0.19±0.23 [HFAG] • LHCb can study Bsfg: DGs≠0, it probesAΔas well as CandS !! _ B0 XsgR(L) B0 no flavour tagging required XsgL(R) flavour tagging required • [1] B. Grinstein et al, Phys. Rev. D 71,011504 (2005), Phys. Rev. D 73, 014013 (2006) • [2] R. N. Mohapatra et al, Phys. Rev. D 11 (1975) 566; (1979) 334. • [3] H. E. Haber et al, Phys. Rept. 117 (1985) 75.

  7. Bs→fg at LHCb e(t) • Acceptance function: e=e (t) • because of IP, vertex displacement cuts @ trigger and selection • Bd→K*(K+p-)g useful x-check • Selection: e 0.3% • eL0  85% , eHLT 80% • ETg>2.7 GeV • Main background: BXf+ p0 • Bs → fp0< 4% CALO • B → K*0g < 0.3% RICH Yields and purities: Belle: O(1 Bs→fg)/day at U(5S)

  8. Bs→fg at LHCb • b) Background “lifetime” vs mass: •  checked that parameter resolutions are robust under bkg lifetime, B/S, st • Other analysis issues: a) st depends on qf-Bs • Precision on ACP parameters: • Fix ms, Gs, DGs, acceptance, e tagging, background “lifetime” Leftmassside-band Rightmassside-band st(ns) cos qf-Bs •  event-by-event errors used in fit  sy  0.1

  9. B0  K*m+m-

  10. Angular distributions in B0  K*m+m- • Decay described by ql, f, qKand q2  mmm2 • Some observables have low theoretical error • Ex: AFB of ql vs q2 in 1 < q2 <6 GeV2low systs. • For 0 x-ing point s0, cancellation of form factors, • s0SM= 4.36+0.33-0.31 GeV2 [1] BELLE ~230 K*llevts(657M BB) BaBar ~60 K*ll evts (384 M BB) compatible with BR(bs g) right handed weak currents q2(GeV2) CDF ~20 K*mm events (0.9fb-1) [1] M Beneke et al, Eur Phys J C 41 173-188, 2005

  11. B0  K*m+m- at LHCb eL0  90% eHLT 75% • Selection: • Background: • Developed 4 methods, with increasing: • Sensitivity to NP, model independence • Requirementsin terms of statistics, control of acceptance functions ~230@BELLE effect on asymmetry, ex: but can be modeled from mass side-bands

  12. B0  K*m+m- at LHCb AFB An example 0.1fb-1 experiment • Counting AFB in bins of q2 • Precision from linear fit, incl. bkg: • @ 0.07 fb-1 competitive with B-facts • Unbinned AFB vs q2 • No need to assume linearity • Remove dependence on bin-size, fit range s(s0SM) q2(GeV2) AFB forward backward q2(GeV2)

  13. Bd→K*mm at LHCb AT(2) LHCb, 2fb-1 3. Fitting projections on ql, f, qK*: • FL, AT, AFB model-indep. functions of C7, C9, C10. • s(s0) factor ~2 better 4.Full angular analysis: • Requires  2fb-1, full acceptance correction • Can form any observable • Eg [2]: SM SUSY [1] q2(GeV2) AT(4) LHCb 10fb-1 SUSY, large-gluino + positive mass insertion  1s, 2s LHCb SM with theory error bands vs [1] Kruger et al, Phys.Rev.D71:094009, 2500 [2] Egede et al, arXiv:hep-ph/0807.2589 q2(GeV2)

  14. Bs m+m-

  15. Bs m+m- • SM: BR = (3.35±0.32)·10-9 [1] • TeVatron • @ 90% CL (~2 fb-1) < 45·10-9 • final (8 fb-1): < 20·10-9 6x BR! • MSSM: • Ex: Non-Universal Higgs Masses framework (generalization of CMSSM) [2] • bs , Mh>114.4 GeV, (g-2) @ 3.4 from SM, WMAP dark matter density BR(Bs+-)~20x10-9 Excluded @ 95% if BR (Bs m+m- ) < 10-7 20·10-9 NUHM 5·10-9 68%  95% [1] arXiv:hep-ph/0604057 (2006) [2] arXiv:0709.0098

  16. Arbitrary normalization Bs m+m-analysis • Selection e  6% • Categorization of signal likelihood: • Geometry: combination of IPS, B lifetime, isolation, B IP, DOCA • Invariant mass • m identification • Exclude/observe BR from distrib. in 3D bins, use CLs method [1] • BR reach 20% better than in simple cut analysis ( eL0 95% , eHLT 90%) Bs m+m- Bkg, L ~ 0.05 fb-1 Geometry likelihood (*) In many bins! [1] A. L. Read, http://doc.cern.ch/yellowrep/2000/2000-005/p81.pdf

  17. Bs m+m-: calibration • For normalization of BR, use control channels instead of MC • Bs BRs measured with large errors (>20%)  use Bd, B+ • Then the largest syst. (13%) comes from additional factor: • Useful channels: Ex: Calibration of geometry likelihood Bs  m+m- [HFAG] B(s)  h+h- TRIGGERED ON OTHER B Geometry likelihood < 6% per bin for 0.5fb-1 (bkg incl.)

  18. Bs m+m-: performance Discovery 90%CL limit (only bkg observed) BR (x10–9) BR (x10–9) Expected final CDF+D0 limit 5 observation Uncertainty from MC stats on bkg SM prediction 3 evidence SM prediction  L dt (fb–1)  L dt (fb–1) Exclusion 0.25 fb–1 BR < 10-8 2 fb–1 BR < SM Discovery (@ SM BR): 3 fb–13 evidence 10 fb–15 observation

  19. Conclusions • LHCb ready to exploit the B factory known as LHC • With 2fb-1 integrated luminosity: • Bs→μμ: BR exclusion down to SM value • 5s observation at SM value with 10 fb-1 • Bd→K*μμ: σ(s0) ~ 0.5GeV2 • Start having sensitivity to other observables with more complex fits • Bs →fg:from CP asymmetry,sy/y 10% • Rare B decays in LHCb will constrain extensions of SM or find NP

  20. Back-up

  21. More rare decays • Radiative : • Polarization through ancular distributions: • Lb → L0γ, Lb →L*γfor tany, @ 3s >20-25% each with 10fb-1 • B±→ fK±g for cos2y • B → r0g, B → wg for b  d • Other bsll observables: • B+ → K+lldirect CP asymmetry in B  K*m+m-, B+  K+m+m- • small in SM <~0.01, statistical error with 10/fb: ~0.01 • B+ → K+ll for ratio e+e- / m+m- (RK) • SM prediction 0.1% theoretical uncertainty, 4% @ LHCb after 10fb-1 • Bs →fm+m-, Bs/Bd, ¼, flavour tagging  1/15 • Lb→ Lm+m-not yet studied • b  dll: • Bs → K*m+m-, Bs/Bd, ¼, |Vtd/Vts|2=0.2082 ~ 1/25 • Lepton Flavour Violation : Bq → ll’

  22. G(B Km+m-)/G(B Ke+e-)

More Related