230 likes | 389 Views
Faddeev 計算による K 中間子原子核. based on PRC76, 035203 (2007). 池田 陽一,佐藤 透(阪大理・原子核理論). 原子核・ハドロン物理:横断研究会@ KEK 2007 年 11 月 19 日 -21 日. Contents Our motivation KNN system with coupled channel Numerical results Summary and future work. Our motivation. Akaishi and Yamazaki, PRC65(2002).
E N D
Faddeev計算によるK中間子原子核 based on PRC76, 035203 (2007). 池田 陽一,佐藤 透(阪大理・原子核理論) 原子核・ハドロン物理:横断研究会@KEK2007年11月19日-21日
Contents • Our motivation • KNN system with coupled channel • Numerical results • Summary and future work
Akaishi and Yamazaki, PRC65(2002) Agnello et al., PRL94(2005) Kaon absorption?? (Magas et al.)
Λ(1405) K-pp system -> the resonance in the KN-πΣ coupled channel system P P S=-1, B=2, Q=+1 L=0 (s-wave interaction) Jπ=0- (3-body s-wave state) • It will be very important • to take into account the dynamics of KN-πΣ system • in order to investigate whether KNN resonance may exist. Solve K- -> Coupled channel Faddeev equation Find • We consider s-wave state. • We expect most strong attractive interaction • in this configure. -> KNN 3-body resonance Our Investigation • We investigate the possible • [KNN](I=1/2,J=0) 3-body resonance state.
KNN system with coupled channel
Separable interaction : Two-body t-matrix :
g τ g = g τ g Kernel Kernel 例えば、一部のダイアグラムは… t t
Formal solution of AGS equation AGS Equation Fredholm type kernel Eigenvalue equation for Fredholm kernel Formal solution for 3-boby amplitude 3-body resonance pole at Wpole
KN-πY(I=0, 1) πN(I=1/2,3/2) NN scattering (Anti-symmetrized) The KNN-πYN resonance 本研究での枠組み:KN相互作用に注目 : 1-particle exchange term π N N N N π N N K Σ,Λ Σ,Λ Σ,Λ π N K : 2-body scattering term Meson-Baryon scattering Baryon-Baryon scattering
2-body Meson-Baryon Potential Chiral effective Lagrangian φ : Meson field , B : Baryon field S-wave separable potential Coupling const. Form factor
Parameter fit (KN interaction) Our parameters -> cut-off of dipole form factor Fit ① : Scattering length given by Martin Fit ② : Λ(1405) pole position given by Dalitz
Experimental data (total cross section) (I=1 channel) (I=0 channel)
πN scattering (S11 and S31) S11 phase shift S31 phase shift Our scattering length Our scattering length Exp. Exp.
NN potential -> 2-term Yamaguchi type Attractive Repulsive core
AGS equation for 3-body amplitude Eigenvalue equation for Fredholm kernel Pole of 3-body amplitude Wp = -B –iΓ/2 Similar to πNN, ηNN, K-d analyses.(Matsuyama, Yazaki, ……) K, N,π KN-πY, NN, πN
Fit to Dalitz pole The pole trajectories of three-body system KNN physical πΣN unphysical energy plane a:KN only b:+NN c:+πYin τ d:π exchange
The three-body resonance pole KNN physical πΣN unphysical energy plane -1.70-i0.68 fm Martin -1.60-i0.68 fm -1.70-i0.59 fm -1.80-i0.68 fm -1.70-i0.78 fm
Nishikawa, Kondo -1.70-i0.68 fm Martin Dalitz Dote et al. Akaishi, Yamazaki DAΦNE Shevchenko et al. K-pp研究の現状 KNN physical πΣN unphysical energy plane
Summary • We solve 3-body equation directly. • We can find the resonance pole • in the KNN physical and πYN unphysical energy plane. In the future • The pole position strongly depends on KN interaction. • -> Structure dependence on Λ(1405) Arai, Oka, Yasui • reaction • Effects of KNN --> YN (p-wave interaction)