600 likes | 1.88k Views
CLASSICAL RELATIONS AND FUZZY RELATIONS. 報告流程. 卡氏積 (Cartesian Product) 明確關係 (Crisp Relations) Cardinality Operations Properties 合成 (Composition) 模糊關係 (Fuzzy Relations) Cardinality Operations Properties Fuzzy Cartesian Product and Compositon Noninteractive Fuzzy Sets
E N D
報告流程 • 卡氏積 (Cartesian Product) • 明確關係 (Crisp Relations) • Cardinality • Operations • Properties • 合成 (Composition) • 模糊關係 (Fuzzy Relations) • Cardinality • Operations • Properties • Fuzzy Cartesian Product and Compositon • Noninteractive Fuzzy Sets • Crisp Tolerance and Equivalence Relations • Fuzzy Tolerance and Equivalence Relations • Value Assignments • Cosine Amplitude • Max-min Method • Other Similarity Methods
Cartesian Product • Producing ordered relationships among sets • X × Y = {(x,y)│x∈X, y∈Y} • All the Ar = A • A1 × A2 × ……. × Ar = Ar
Cartesian Product • Example 3.1 • Set A = { 0,1 } • Set B = { a, b, c } A × B = {(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)} B × A = {(a,0),(a,1),(b,0),(b,1),(c,0),(c,1)} A × A = A2 = {(0,0),(0,1),(1,0),(1,1)} B × B = B2 ={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)}
Crisp Relations • Measure by characteristic function:χ • X × Y = {(x,y)│x∈X, y∈Y} • Binary relation • χX×Y(x,y)= 1, (x,y) ∈ X × Y 0, (x,y) X × Y • χR(x,y)= 1, (x,y) ∈ X × Y 0, (x,y) X × Y
a b c 1 R = 2 3 Crisp Relations • EX: X={1,2,3} Y={a,b,c} • Relation Matrix • Sagittal diagram
Crisp Relations • Example 3.2 • (一) • X={1,2} Y={a,b} 1 a • Locations of zero 2b • R={(1,a),(2,b)} R X × Y • (二) • A={0,1,2} • UA:universal relation IA:identity relation • 以 A2 為例 • UA = {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)} IA = {(0,0),(1,1),(2,2)}
Crisp Relations • Example 3.3 • Continous universes • R={(x,y) | y ≥ 2x, x∈X, y∈Y} • χR(x,y)= 1, y ≥ 2x 0, Y < 2x
Cardinality of Crisp Relations • X:n elements Y:m elements n X :the cardinality of X n Y :the cardinality of Y • Cardinality of the relation • n X × Y = nX * nY • power set • The cardinality :P(X × Y) • n P(X × Y) = 2(nXnY)
Operations on Crisp Relations • Union • Intersection • Complement • Containment • Identity (Ø → O and X → E)
Properties of Crisp Relations • 交換律(Commutative law) • 結合律(Associative law) • 分配律(Distributive law) • 乘方(Involution) • 冪等律(Idempotence) • 狄摩根定律(De Morgan’s law) • 排中律(Low of Excluded Middle)
Composition • R={(X1,Y1),(X1,Y3),(X2,Y4)} S={(Y1,Z2),(Y3,Z2)} • Composition oeration • Max-min composition • T=R。S • Max-product comositon • T=R。S
Composition • Example 3.4 • Max-min composition y1 y2 y3 y4 z1 z2 R= x1 S= y1 x2 y2 x3y3 y4 z1 z2 T= x1 x2 x3
Fuzzy Relations • Membership function • Interval [0,1] • Cartesian space X × Y => • Cardinality of Fuzzy Relations • Universe is infinity
Operations on Fuzzy Relations • Union • Intersection • Complement • Containment
Properties of Fuzy Relations • 排中律(Low of Excluded Middle)在Fuzzy 集合中並不成立 !
Fuzzy Cartesian Product • Cartesian product space • Fuzzy relation has membership function • Example 3.5
Fuzzy Composition • Fuzzy max-min composition • Fuzzy max-product composition • 不論 crisp 或 fuzzy 的composition
Fuzzy Composition • Example 3.6 X={x1,x2} Y={y1,y2} Z={z1,z2,z3} • Max-min composition • Max-product compositon
Noninteractive Fuzzy Sets • Fuzzy set on the Cartesian space X =X1 × X2 noninteractive interactive
Noninteractive Fuzzy Sets • Example 3.7
Noninteractive Fuzzy Sets • Example 3.7(續) • Cartesian product
Noninteractive Fuzzy Sets • Example 3.7(續) • Max-min composition • Example 3.8 • Max-min composition
Noninteractive Fuzzy Sets • Example 3.9
Tolerance and Equivalence relations • 自返性(reflexivity) • 對稱性(symmetry) • 傳遞性(transitivity)
Crisp Eqivalence Relation • 自返性(reflexivity) • (xi,xi) R or • 對稱性(symmetry) • (xi,xj) R (xj,xi) R or • 傳遞性(transitivity) • (xi,xj) R and (xj,xk) R (xi,xk) R or
Crisp Tolerance Relation • Also called proximity relation • Only the reflexivity and symmetry • Can be reformed into an equivalence relation • By at most (n-1) compositions with itself
Crisp Tolerance Relation • Example 3.10 • X={x1,x2,x3,x4,x5}={Omaha, Chicago, Rome, London, Detroit} • R1 does not properties of transitivity • e.g. (x1,x2) R1 (x2,x5) R1 but (x1,x5) R1
Crisp Tolerance Relation • Example 3.10(續) • R1 can become an equivalence relation through two compositions
Fuzzy tolerance and equivalence relations • 自返性(reflexivity) • 對稱性(symmetry) • 傳遞性(transitivity)
Fuzzy tolerance and equivalence relations • Equivalence relations • Fuzzy tolerance relation Can be reformed into an equivalence relation • By at most (n-1) compositions with itself
Fuzzy tolerance and equivalence relations • Example 3.11 • It is not transitive • One composition Reflexive and symmetric
Fuzzy tolerance and equivalence relations • Example 3.11(續)
Value assignments • Cartesian product • Closed-from expression • Simple observation of a physical process • No variation • model the process crisp relation • Y= f(X) • Lookup table • Variability exist • Membership values on the interval [0,1] • Develop a fuzzy relation • Linguistic rules of knowledge • If-then rules • Classification • Similarity methods in data manipulation
Cosine Amplitude • X={x1,x2,….,xn} xi={ }
Cosine Amplitude • Example 3.12 • r12=0.836
Cosine Amplitude • Example 3.12(續) • Tolerance relation • Equivalence relation
Max-min Method • rij= where i, j =1,2,…n • Example 3.13 • Reconsider Example 3.12 • Tolerance relation
Summary Q & A