240 likes | 832 Views
Chapman Mechanism (~1930, Sidney Chapman). O 2 + h O + O (<242.4 nm). O + O 2 + M O 3 + M. O 3 + h O + O 2 (<280 nm). O + O 3 2O 2. O + O + M O 2 + M. http://www.epa.gov/indicators/roe/html/roeAirInfo.htm United States Environmental Protection Agency
E N D
Chapman Mechanism(~1930, Sidney Chapman) O2 + h O + O (<242.4 nm) O + O2 + M O3 + M O3 + h O + O2 (<280 nm) O + O3 2O2 O + O + M O2 + M
http://www.epa.gov/indicators/roe/html/roeAirInfo.htm United States Environmental Protection Agency EPA Report on the Environment (ROE) http://www.atm.ch.cam.ac.uk/tour/part2.html “The Ozone Tour” Centre for Atmospheric Science, University of Cambridge
“The Ozone Tour” -- http://www.atm.ch.cam.ac.uk/tour/part3.html Centre for Atmospheric Science, University of Cambridge Nobel Prize 1995 (1/3 each) Mario J. Molina USA M.I.T. Cambridge, Mass. Paul J. Crutzen The Netherlands Max-Planck Institut Mainz, Germany F. Sherwood Rowland USA University of California Irvine, California
Catalytic Decomposition of Ozone X + O3 XO + O2 XO + O X + O2 ________________________________ O3 + O 2O2 X = HOx (H, OH, HOO) NOx (NO, NO2) ClOx (Cl, ClO) N2O from troposphere: N2O + O* 2NO in middle & upper stratosphere NO + O3 NO2 + O2 NO2 + O NO + O2 ________________________________ O3 + O 2O2 Above 45 km,OH dominates, from: O* + H2O OH + OH and O* + CH4 OH + CH3 HO + O3 HOO + O2 HOO + O HO + O2 ________________________________ O3 + O 2O2
In lower stratosphere (~15-25 km), [O] is relatively low: UV-C absorbed by ozone. [O2] is high (so most O quickly reacts with it). Therefore, the dominant ozone loss mechanism is: X + O3 XO + O2 X + O3 XO + O2 XO + XO X + X+ O2 ________________________________ 2O3 3O2 Reaction goes by: XO + XO [XOOX] X + X+ O2 Rate of O3 production depends on [O2], [O3], h (UV-C) Destruction is more complex, but depends on [X], UV-B. If something changes, generally [O3] increases or decreases until it reaches a steady state. Self-healing: [O3], UV-C, more O3 forms below. Next: Atomic Cl and Br as X.
Atomic Cl and Br as X: Cl can destroy tens of thousands of O3 molecules each, but is mainly in inactive forms (HCl, ClONO2) in stratosphere. ClO + NO2 ClONO2 Cl + CH4 HCl + CH3 CH3 does not operate as an X catalyst, since it combines with O2 to give CO2.
On crystals: ClONO2g + HCls Cl2g + HNO3aq Cl2 + hn 2Cl or: ClONO2g + HsOaq HOClaq + HNO3aq HClg H+aq + Cl-aq Cl -aq + HOClaq Cl2g + OH-aq Crystals bind NO2 that would normally deactivate Cl, removing it to the troposphere (denitrification). Conditions in the Arctic are similar to those in the Antarctic, but not as severe, because the temperature is not as low there as in the Antarctic.