1 / 24

Phenomenology of New Vector Resonances from SEWSB at Future e+e- Colliders

IEP SAS, Kosice, May 13, 2005. Phenomenology of New Vector Resonances from SEWSB at Future e+e- Colliders. Ivan Melo. M. Gintner, I. Melo, B. Trpisova (University of Zilina). Outline. Motivation for new vector ( ρ ) resonances: Strong EW Symmetry Breaking (SEWSB)

zonta
Download Presentation

Phenomenology of New Vector Resonances from SEWSB at Future e+e- Colliders

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IEP SAS, Kosice, May 13, 2005 Phenomenology of New Vector Resonances from SEWSB at Future e+e- Colliders Ivan Melo M. Gintner, I. Melo, B. Trpisova (University of Zilina)

  2. Outline • Motivation for new vector (ρ) resonances: Strong EW Symmetry Breaking (SEWSB) • Vector resonance model • ρ signals in e+ e- →ννtt,e+ e-→ tt • ρ signal in pp → ρtt→ WWtt

  3. Higgs boson Higgs boson

  4. EWSB: SU(2)L x U(1)Y→ U(1)Q Weakly interacting models: - SUSY - Little Higgs Strongly interacting models: - Technicolor

  5. Chiral SB in QCD SU(2)L x SU(2)R → SU(2)V , vev ~ 90 MeV EWSB SU(2)L x SU(2)R → SU(2)V , vev ~ 246 GeV

  6. LEP: e+e-, Ecm = 209 GeV Tevatron: pp, Ecm = 2 000 GeV, L = 1 fb-1 LHC: pp, Ecm = 14 000 GeV, L = 100 fb-1 ILC: e+e-, Ecm = 1 000 GeV, L = 200 fb-1 CLIC: e+e-, Ecm = 3-5 000 GeV, L = 200 fb-1

  7. WL WL→ WL WLWLWL → t tt t → t t L = i gπMρ/v (π- ∂μπ+ - π+ ∂μπ-)ρ0μ + gV t γμ t ρ0μ+ gA t γμ γ5 t ρ0μ

  8. International Linear Collider: e+e- at 1 TeV ee ―› ρtt ―›WW tt ee ―› ρtt ―›tt tt ee ―› WW ee ―› tt ee ―› ννWW ee ―›ννtt Large Hadron Collider: pp at 14 TeV pp ―› ρtt ―›WW tt pp ―› ρtt ―›tt tt pp ―› WW pp ―› tt pp ―› jj WW pp ―› jj tt

  9. Chiral effective Lagrangian SU(2)L x SU(2)R global, SU(2)L x U(1)Y local L = Lkin - v2 Tr [ Aμ Aμ] -a v2 /4 Tr[(ωμ + i g''ρμ . τ/2 )2] - ψL u+u+ M ψR – h.c. + ψL i γμ (∂μ + Wμ+ i g’/6 Yμ) ψL + ψR i γμ (∂μ + Yμ+ i g’/6 Yμ) ψR +b1ψL i γμ (u+∂μ – u+ρμ+ u+ i g’/6 Yμ) u ψL + b2ψRPb i γμ (u ∂μ – u ρμ+ u i g’/6 Yμ) u+PbψR + λ1ψL i γμ u+ Aμγ5 u ψL +λ2ψR Pλ i γμ u Aμγ5 u+PλψR + κ2ψR Pκ i γμ u (ωμ + ρμ) u+ PκψR BESS Our model Minimal modelStandard Model with Higgs replaced with ρ

  10. A simple Lagrangian L = i gπ Mρ/v (π- ∂μπ+ - π+ ∂μπ- )ρ0μ + gV t γμ t ρ0μ+ gA t γμ γ5 t ρ0μ Chiral effective Lagrangian L = - v2 Tr [ Aμ Aμ] -a v2 /4 Tr[(ωμ + i g''ρμ . τ/2 )2] + b1 IbL + b2 IbR + ... gπ= Mρ /(2 v g'') gV ≈ g'' b2 /4 = gA (b1 = 0) Mρ≈ √a v g''/2

  11. Unitarity constraints WLWL → WLWL , WLWL → t t,t t → t t gπ ≤ 1.75 (Mρ= 700 GeV) gV ≤ 1.7 (Mρ= 700 GeV) Low energy constraints g’’ ≥ 10 → gπ ≤ 0.2 Mρ(TeV) |b2 – λ2| ≤ 0.04 → gV ≈ g’’ b2 / 4

  12. Subset of fusion diagrams + approximations (Pythia) Full calculation of 66 diagrams at tree level (CompHEP)

  13. Pythia vs CompHEP ρ (M = 700 GeV, Γ = 12.5 GeV, g’’ = 20, b2 = 0.08) Before cuts √s (GeV) 800 1000 1500 Pythia (fb) 0.35 0.95 3.27 CompHEP (fb) 0.66 1.16 3.33

  14. Backgrounds (Pythia) e+e- → tt γ e+e- → e+e- tt σ(0.8 TeV) = 300.3 + 1.3 fb → 0.13 fb(0.20 fb) σ(1.0 TeV) = 204.9 + 2.4 fb → 0.035 fb (0.16 fb)

  15. ≈ S/√B

  16. e- e+→ t t ρ different from Higgs ! ρ (M= 700 GeV, b2=0.08, g’’=20)

  17. Search at Hadron Colliders Tevatron: p + p ―› t + t σS= 1.2 fb σB = 8 306 fb LHC: p + p ―› t + t σS = 22.7 fb σB = 752 000 fb

  18. Search at LHC: pp → W W t t g g ―› WW tt 39 diagrams u u ―› WW tt 131 diagrams d d ―› WW tt 131 diagrams Signal: σ(gg) = 10.2 fb ―› 1.0 fb Cuts: 650 < mWW < 750 GeV pT > 100 GeV |y| < 2 R > 5 Background: σ(gg) = 10.6 fb ―› 0.6 fb σ(uu) = 2.4 fb ―› 0.1 fb

  19. Conclusions • New strong ρ-resonance model • ρ in e+e- → ννttR values up to 8 • e+e- → tt – sensitive probe of mt physics, Lscan = 1 fb-1 (preliminary) • pp → W W t t R > 5 (preliminary !)

More Related