380 likes | 518 Views
Understanding the Effects of Climate Change on Water Resources in the Pacific Northwest. Alan F. Hamlet, Philip W. Mote, Richard Palmer Lara Whitely Binder Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
E N D
Understanding the Effects of Climate Change on Water Resources in the Pacific Northwest • Alan F. Hamlet, • Philip W. Mote, • Richard Palmer • Lara Whitely Binder • Dennis P. Lettenmaier • JISAO/CSES Climate Impacts Group • Dept. of Civil and Environmental Engineering • University of Washington
Recession of the Muir Glacier Aug, 13, 1941 Aug, 31, 2004 Image Credit: National Snow and Ice Data Center, W. O. Field, B. F. Molnia http://nsidc.org/data/glacier_photo/special_high_res.html
Tmax Canada USA PNW CA GB Tmin CRB
Trends in April 1 SWE 1950-1997 Mote P.W.,Hamlet A.F., Clark M.P., Lettenmaier D.P., 2005, Declining mountain snowpack in western North America, BAMS, 86 (1): 39-49
As the West warms, spring flows rise and summer flows drop Stewart IT, Cayan DR, Dettinger MD, 2005: Changes toward earlier streamflow timing across western North America, J. Climate, 18 (8): 1136-1155
Projections for the Future Using Global Climate Models
Natural AND human influences explain the observations of global warming best. Natural Climate Influence Human Climate Influence All Climate Influences
+3.2°C °C +1.7°C +0.7°C 1.2-5.5°C 0.9-2.4°C 0.4-1.0°C Observed 20th century variability Pacific Northwest
% +6% +2% +1% Observed 20th century variability -1 to +3% -1 to +9% -2 to +21% Pacific Northwest
Annual PNW Precipitation (mm) Winter climate in the mountains is the key driver of streamflow. Snowpack functions as a natural reservoir. Elevation (m)
Effects of the PDO and ENSO on Columbia River Summer Streamflows PDO Cool Cool Warm Warm high high low low
Warming Affects Streamflow Timing • Temperature warms, • precipitation unaltered: • Streamflow timing is altered • Annual volume may be somewhat lower due to increased ET Black: Obs Red: 2.3° C warming
Precipitation Affects Streamflow Volume • Precipitation increases, • temperature unaltered: • Streamflow timing stays about the same • Annual volume is altered Black -- Obs Blue -- 9% increase in precip.
Schematic of VIC Hydrologic Model and Energy Balance Snow Model 6 km 1/16th Deg. PNW 6 km Snow Model
The warmest locations that accumulate snowpack are most sensitive to warming +2.3C, +6.8% winter precip
Simulated Changes in Natural Runoff Timing in the Naches River Basin Associated with 2 C Warming • Increased winter flow • Earlier and reduced peak flows • Reduced summer flow volume • Reduced late summer low flow
Rain Dominant Chehalis River
Warm Transient Snow Hoh River
Cooler Transient Snow Nooksack River
Snowmelt Dominant Skagit River
Will Global Warming be “Warm and Wet” or “Warm and Dry”? Answer: Probably BOTH!
Regionally Averaged Cool Season Precipitation Anomalies PRECIP
Impacts to the Columbia River Hydro System
Impacts on Columbia Basin hydropower supplies • Winter and Spring: increased generation • Summer: decreased generation • Annual: total production will depend primarily on annual precipitation (+2C, +6%) (+2.3C, +5%) (+2.9C, -4%) NWPCC (2005)
Warming climate impacts on electricity demand • Reductions in winter heating demand • Small increases in summer air conditioning demand in the warmest parts of the region NWPCC 2005
Climate change adaptation may involve complex tradeoffs between competing system objectives Source: Payne, J.T., A.W. Wood, A.F. Hamlet, R.N. Palmer and D.P. Lettenmaier, 2004, Mitigating the effects of climate change on the water resources of the Columbia River basin, Climatic Change Vol. 62, Issue 1-3, 233-256
Instream Flow Augmentation and Water Quality
Simulated Changes in Natural Runoff Timing in the Naches River Basin Associated with 2 C Warming • Increased winter flow • Earlier and reduced peak flows • Reduced summer flow volume • Reduced late summer low flow
Temperature thresholds for coldwater fish in freshwater • Warming temperatures will increasingly stress coldwater fish in the warmest parts of our region • A monthly average air temperature of 68ºF (20ºC) has been used as an upper limit for resident cold water fish habitat, and is known to stress Pacific salmon during periods of freshwater migration, spawning, and rearing +1.7 °C +2.3 °C
Overview of Some Water Resources Impact Pathways in the Skagit Basin
Water Supply and Demand • Changes in the seasonality water supply (e.g. reductions in summer) • Changes in water demand (e.g. increasing evaporation) • Changes in drought stress • Increasing conflicts between water supply and other uses and users of water • Energy Supply and Demand • Changes in the seasonality and quantity of hydropower resources • Changes in energy demand • Increasing conflicts between hydro and other uses and users of water • Instream Flow Augmentation • Changes in low flow risks • Changes in the need for releases from storage to reproduce existing streamflow regime. • Changes in water resources management related to water quality (e.g. to provide dilution flow or to control temperature)
Flood Control and Land Use Planning • Changes in flood risks • Changes in flood control evacuation and timing • Dam safety • Impacts in the Skagit Delta • Impacts of sea level rise and changing flood risk on low lying areas (dikes and levies) • Impacts to ecosystem function • Puget Sound impacts • Changes in land use policy (coastal armoring, land ownership, FEMA maps) • Long-Term Planning, Water Law and Policy • Water allocation agreements in a non-stationary climate (e.g. water permitting) • Appropriateness of the historic streamflow record as a legal definition of climate variability • Need for new planning frameworks in a non-stationary climate
Approaches to Adaptation and Planning • Anticipate changes. Accept that the future climate will be substantially different than the past. • Use scenario based planning to evaluate options rather than the historic record. • Expect surprises and plan for flexibility and robustness in the face of uncertain changes rather than counting on one approach. • Plan for the long haul. Where possible, make adaptive responses and agreements “self tending” to avoid repetitive costs of intervention as impacts increase over time.
Overview of Some Existing Climate Change Water Planning Studies • Seattle Water Supply (Wiley 2004) • White River Basin (Ball 2004) • Snohomish Basin (Battin et al. 2007) • Columbia Hydro System (Hamlet et al. 1999; Payne et al. 2004, NWPCC 2005) Ball, J. A. 2004. Impacts of climate change on the proposed Lake Tapps-White River water supply, M.S.C.E. thesis, Dept. of Civil and Environmental Engineering, College of Engineering, University of Washington, Seattle. Battin J., Wiley, M.W., Ruckelshaus, M.H., Palmer, R.N., Korb, E., Bartz, K.K., Imaki, H., 2007. Projected impacts of climate change on salmon habitat restoration, Proceedings of the National Academy of Sciences of the United States of America, 104 (16): 6720-6725 Hamlet, A. F. and D. P. Lettenmaier. 1999b. Effects of climate change on hydrology and water resources in the Columbia River Basin. Journal of the American Water Resources Association 35(6):1597-1623. Payne, J. T., A. W. Wood, A. F. Hamlet, R. N. Palmer, and D. P. Lettenmaier. 2004. Mitigating the effects of climate change on the water resources of the Columbia River basin. Climatic Change 62:233-256. NW Power and Conservation Council, 2007, Effects of Climate Change on the Hydroelectric System, Appendix N to the NWPCC Fifth Power Plan, http://www.nwcouncil.org/energy/powerplan/plan/Default.htm Wiley, M. W. 2004. Analysis techniques to incorporate climate change information into Seattle's long range water supply planning. M.S.C.E. thesis, Dept. of Civil and Environmental Engineering, College of Engineering, University of Washington, Seattle.