1 / 24

Planets and Solar System Science at Low Frequencies Philippe Zarka

Planets and Solar System Science at Low Frequencies Philippe Zarka LESIA, CNRS-Observatoire de Paris France philippe.zarka@obspm.fr Towards a European Infrastructure for Lunar Observatories Bremen, 22-23/3/2005 - EADS / ASTRON / Radionet. Limitations of ground-based LF radioastronomy :

zyta
Download Presentation

Planets and Solar System Science at Low Frequencies Philippe Zarka

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Planets and Solar System Science at Low Frequencies Philippe Zarka LESIA, CNRS-Observatoire de Paris France philippe.zarka@obspm.fr Towards a European Infrastructure for Lunar Observatories Bremen, 22-23/3/2005 - EADS / ASTRON / Radionet

  2. Limitations of ground-based LF radioastronomy : •  RFI (man-made, lightning spherics) • Ionospheric cutoff (~10 MHz) + propagation effects (≤30 MHz) • Sky background (fluctuations) •  IP, IS scintillations • (Solar radio emissions)

  3. Limitations of LF radioastronomy in Earth orbit : •  RFI (man-made, lightning spherics) • Auroral Kilometric Radiation • Sky background (fluctuations) •  IP, IS scintillations • (Solar radio emissions)

  4. Solar emission/ burst/storm • Spherics • LF Earth environment : • AKR day/night (at 60 RE) • Thermal noise (≠flux) • Galactic background • Ionospheric LF cutoff • Solar wind LF cutoff

  5. Galactic background for a short dipole antenna, i.e. with =8/3, A=32/8 • Antenna effective area : • A = k2 with k = 3/8 ~1/8 for a short dipole, • k ~N/8 for N dipoles • A  ~ 2 ~1/k ~ 8/N • LOFAR ~ 104 dipoles

  6. Jovian radio emissions (near opposition) : • Solar wind / magnetosphere interaction (auroral emissions) • Io/magnetosphere interaction • Io torus • + Synchrotron from radiation belts (HF)

  7. Radiosources in Jupiter's environment

  8. Io-Jupiter plasma interaction

  9. + Saturn, Uranus, Neptune auroral emissions : Saturn Uranus Neptune

  10. LF cutoff  dayside peak ionospheric density • + Saturn, Uranus atmospheric lightning : Saturn Uranus

  11. Detectability from the ground (Earth) : • In absence of solar bursts & spherics • In absence of RFI / after successful mitigation •  ≥10-20 MHz •  Jovian DAM with C=(dipole/)(b)1/2~N(b)1/2 ≥100 (ex : N=1, 10 kHz  1 sec) •  Saturn’s lightning with C ≥105(N=200, 10 MHz  25 msec), without access to LF cutoff C 102 104 106

  12. Moon : • Shielding of RFI, spherics, AKR, Solar emissions • Only limitation to sensitivity = sky background fluctuations • Ionospheric LF cutoff <<500 kHz

  13. Detectability from the Moon : •  all Jovian emissions+ Saturn auroral emissions with C ≥ 100-1000 (N=1-10, 10 kHz  1 sec) •  + Uranus & Neptune auroral emissions + Saturn & Uranus lightning(including LF cutoff) with C ≥ 104(N=10-100, 200 kHz  50-500 msec) C 102 104 106

  14. Long-term magnetospheric radio observations (+ multi- correlations)

  15. Variabilities/periodicities  magnetospheric dynamics (role of SW, planetary rotation, satellite interactions, Io volcanism, short-lived bursts, substorms ?…) •  planetary rotation period •  B anomalies + secular variations •  Io torus probing (nKOM+Faraday effect) •  SW monitoring from 1 to 30 AU

  16. Saturn/Titan interaction (+other satellites ?) SW influence, substorms ? • Uranus & Neptune auroral emissions observed only once by Voyager 2 ! • Lightning : long-term monitoring, correlation with optical observations, planetary comparative meteorology

  17. Extrasolar Jupiter-like radio emissions at 10 pc range : • Flux up to  105 Jupiter’s strength for magnetized hot Jupiters with solar-like stellar wind input, or unmagnetized hot Jupiters in interaction with strongly magnetized star • + possible stronger stellar wind, focussing events, … C 103 105 107 109 105 103 10 1

  18. Hot Jupiters ? Magnetic Radio Bode's Law • •

  19. Detectability from the ground (Earth) : • No solar bursts /spherics , RFI mitigation • ≥10-20 MHz •  requires C≥107 (N=1000-10000, 1-10 MHz  1-10 sec) C 103 105 107 109

  20. Detectability from the Moon : C 103 105 107 109 • ≥1 order of magnitude better (C ≥ 105-6 : N=100, 1-10 MHz  1-10 sec) • + access to less energetic sources (C ≥ 106-7 : N>>100) • + access to VLF (weakly magnetized bodies)

  21. NB : • Angular resolution required ~1°-10°  D = 6-60  (18-180 km @ 100 kHz ; 1.8-18 km @ 1 MHz) • if detectability of exo-planetary radio emissions  same for solar-like stellar radio emissions • complementarity to ground-based LOFAR • difficult from space • weak scattering/broadening effects at sources distances <a few 10’s pc

  22. possible active sounding of Terrestrial magnetosphere (~IMAGE)

More Related