340 likes | 1.36k Views
Fatal Familial Insomnia: Pathogenesis caused by a mutation affecting the metabolism of the normal prion protein. By Sabrina T. Gillig BIO-475 Seminar Dr. Peter Lin.
E N D
Fatal Familial Insomnia: Pathogenesis caused by a mutation affecting the metabolism of the normal prion protein.By Sabrina T. GilligBIO-475 SeminarDr. Peter Lin
Petersen, R.B., P. Parchi, S.L. Richardson, C.B. Urig, and P. Gambetti. 1996. Effect of the D178N mutation and the codon 129 polymorphism on the metabolism of the prion protein. The Journal of Biological Chemistry 271: 12661-12668.
What are Prions? • Prions are the smallest infectious particles known to date. They are made only of a protein. • Prions are abnormally folded proteins. • Prions are the cause of transmissible spongiform encephalopathies. • Prion diseases are fatal and untreatable. Cann, 1997.
More on prions • The normal prion protein PrPc is found primarily on the surface of neurons, and is likely to be a synaptic protein with functional role in the synaptic transmission. • Prion diseases exhibit an extended latency period, spending this time performing neuroinvasion.
What is Fatal Familial Insomnia? • FFI is an autosomal dominant inherited disease; cause by a mutation of the normal prion protein. • A mutation in codon 178 replaces asparagine for aspartic acid. • First symptoms to arise trouble sleeping, difficulty concentrating , and personality changes • These symptoms usually appear during midlife, after appearance of the first symptoms death follows usually with 18 months.
The Thalamus (Wikipedia, 2006) • The thalamus is the point where most signals from the CNS pass to the cerebrum. • Severe loss of neurons in the thalamic nuclei, and accumulation of amyloid plaques. • When brain tissue is examined under the microscope, numerous tiny holes are visible, giving it a sponge-like appearance- From these observation the name TSE arose.
Treatment • There is no treatment for FFI. • Two drugs (quinacrine and chlorpromazine) were being tested, but the individuals in the clinical trials worsened.
Metabolism of the mutated prion protein • The polymorphism in codon 129 is exclusive to humans. The two common forms of PRPN are the major determinants in the phenotypic expression of TSEs. • PRNP encodes for methionine (sulfur-containing aminoacid) or valine (essential aminoacid for growth). • CJD and FFI both present a mutation in codon 178, but codon 129 is the one that determines the phenotype. • The normal non-mutant haplotype is designated 178D, the haplotype in FFI is designated D178N. • The metabolic and mutational events that lead to the syndrome will be examined further along this presentation.
Expression, Localization and metabolism of the PrP in humans • PrPc is a glycoprotein attached to the cell membrane . • During the process of translocation (rearrangement occurring when a piece of one chromosome is broken off and joined to another chromosome ) in the ER PrPc continues its folding process. • Further folding occurs in the Golgi apparatus
Three forms of PrPc • Called GLYCOFORMS and differ in the level of glycosylation (addition of sugar units). • 1) Unglycosylated • 2)monoglycosylated • 3)diglycosylated
-Purpose-Comparison among normal and mutant cells in the metabolism of the prion protein • Cells from the FFI haplotype only released 1/3 the amount of PrP to the cell surface when compared to normal cells. • Confirms that the three PrP forms differ in the level of glycosylation→ In mutant cells the unglycosylated form is virtually inexistent.
Transport in the secretory pathway • Distinct amounts of glycosylation in normal and mutant forms indicate that the mutant PrP is not adequately transported during the secretory pathway.
Stability and transport of the prion protein • Experimental By using the antibiotic tunicamycin (which prevents glycosylation in newly synthesized proteins), effect of the glycosylation in the transport of the PrPm was evaluated.
Results • The unglycosylated form of the D178N PrPm is degraded inside the cell, while the normal PrPc necessitates glycosylation to reach the cell surface. • When glycosylation is prevented, the PrPm hardly arrives to the cell surface, and untraceable after synthesis.
PrP Degradation • Experimental In order to find out whether PrPm is degraded when kept in the ER-Golgi compartment scientists used brefeldin A (which blocks transport of glycosylated proteins from the ER to the Golgi complex).
Results • Normal cells + Brefeldin A All three glycoforms were observed • Mutant cells + Brefeldin A Mutant cells exhibited degradation or change to the glycosylated form →More unglycosylated PrPm reaches the cell surface when valine is present in codon 129.
Results (continued) • Degradation of the mutant prion protein does not occur in the Golgi compartment, but in the endosomal-lysosomal system, which contains highly acidic enzymes.
D178N mutant cells lack PrPres • Normal and mutant cells were tested for proteinase K-resistant PrP. • Mutant cells lack PrPres which provides resistance to powerful denaturing conditions.
Underrepresentation in the brain of the PrPm • Western Blot was used to determine whether the unglycosylated form of the mutant prion protein is decreased in FFI patients. • Portions of normal and diseased brain were examined.
Results • Normal gray matter presented the three previously discussed glycoforms which transfer as a single unit after deglycosylation. • In the mutant gray matter the unglycosylated form is present at only about 1/3 when compared to the normal samples.
Conclusion • Pathogenesis in FFI and other prion diseases is believed to be caused by a change in the shape of the normal protein. • It is imperative to continue research, since in other neurodegenerative diseases (e.g. Alzheimer's) a misfolded protein could also be the cause. • A detailed analysis of the different factors, mechanisms and disease expression may be critical in the even of an epidemic (Mad Cow disease in the mid 1990’s).
Conclusion • Even though FFI and other prion diseases are rare and sporadic, science should always try to stay a step ahead…for the sake of all humanity.
Resources • Aguzzi, A. 2004. Peripheral pathogenesis of prion diseases. Pp.145-189 in Prions and prion diseases. Horizon Bioscience, England. • Aguzzi, A., F. Montrasio, and P.S. Kaeser. 2001. Prions: health scare and biological challenge. Nat Rev Mol Cell Biol 2: 118-126. • Aguzzi, A., and C. Weissmann. 1997. Sleepless in Bologna: transmission of fatal familial insomnia. Trends in Microbiology 4: 129-131. • Benito-Leon, J. 2004. Combined quinacrine and chlorpromazine therapy in fatal familial insomnia. Clin. Neuropharmacol. 27: 201-203. • Blatter, T., S. Brandner, A.J. Raeber, M.A. Klein, T. Voigtlander, C. Weissmann, and A. Aguzzi. 1997. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389: 69. • Bosque, P.J., C.L. Vnencak-Jones, M.D. Johnson, J.A. Whitlock, and M.J. McLean. 1992. A PrP gene codon 178 base substitution and a 24-bp interstitial deletion in familial Creutzfeldt-Jakob disease. Neurology 10: 1964-1870. • Butler, G.H., H. Kotani, L. Kong, M. Frick, S. Evancho, E.J. Stanbridge, and G.J. McGarrity. 1991. Identification and characterization of proteinase K-resistant proteins in members of the class Mollicutes. Infect Immun 59: 1037-1042. < http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=258364 >. Accessed 09 Mar 2006. • Cancerweb. 1997. Endosomes. < http://cancerweb.ncl.ac.uk/cgi-bin/omd?query=endosomes >. Accessed 09 Mar 2006. • Cann, A.J. 1997. Principles of molecular virology. Prion picture < http://www.triroc.com/sunnen/topics/prion.htm >. Accessed 07 Mar 2006. • Caughey, B., R.E. Race, D. Ernst, L.L. Perry, B. Chesebro, and R.E. Race. 1990. Normal and scrapie-associated forms of prion protein differ in their sensitivities to phospholipase and proteases in intact neuroblastoma cells. Journal of Virology 64: 1093. • Caughey, B., R.E. Race, M. Vogel, M.J. Buchmeier, and B. Chesebro. 1988. In vitro expression in eukaryotic cells of a prion protein gene cloned from scrapie-infected mouse brain. Proc Natl Acad Sci USA 85: 4657-61. • Caughey, B., and G. J. Raymond. 1991. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J Biol Chem 266: 18217-18223. • Chen, S.G., D.B. Teplow, P. Parchi, J.K. Teller, P. Gambetti, and L. Autilio-Gambetti. 1995. Truncated forms of the human prion protein in normal brain and in prion diseases. The Journal of Biological Chemistry 270: 19173-80. • Clarke, M.C., and R.H. Kimberlin. 1984. Pathogenesis of mouse scrapie: distribution of agent in the pulp and stroma of infected spleens. Vet Microbiol 3: 215. • Couzin, J. 2006. The prion protein has a good side? You bet. Science 311: 1091.
Resources (continued) • Cognitive Science Laboratory: Wordnet. 1998. Wordnet search 2.1. < http://wordnet.princeton.edu/perl/webwn?s=valine >. < http://wordnet.princeton.edu/perl/webwn?s=asparagine >. Accessed 07 Mar 2006. • Cohen, F.E., K.M. Pan, Z. Huan, M. Baldwin, R.J. Fletterick, and S.B. Prusiner. 1994. Structural clues to prion replication. Science 264: 530-531. • Collinge, J. 2005. Molecular neurology of prion disease. J Neurol Neurosurg Psychiatry 7: 906-919. • Cortelli, P., P. Gambetti, P. Montagna, and E. lugaresi. 1999. Fatal familial insomnia: clinical features and molecular genetics. J. Sleep Res. 8: 23-29. • Cummings, J. 2003. The neuropsychiatry of Alzheimer’s disease and other related dementias. Pp. 251-252. Martin Dunitz, London. • Cytokinetics, Inc. 2006. Glossary. < http://www.cytokinetics.com/cyto/glossary >. Accessed 09 Mar 2006. • Dormont, D. 2002. Prion diseases: pathogenesis and public health concerns. FEBS Letters 529: 17-21. • Enzymatic Therapy, Inc. 2006. Glossary. < http://www.enzy.com/glossary/searchresults.asp?txtTerm=M&comparetype=2 >. Accessed 07 Mar 2006. • Gajdusek, D.C., C.J. Gibbs, and M. Alpers. 1966. Experimental transmission of Kuru- like syndrome to chimpanzees. Nature 209: 794-796. • Gallassi, R., A. Morreale, P. Montagna, P. Cortelli, P. Avoni, R. Castellani, P. Gambetti, and E. Lugaresi. 1996. Fatal familial insomnia: behavioral and cognitive features. Neurology 46: 935-939. • Genethon: Gene therapies research and application center. 2006. Glossary < http://www.genethon.fr/php/layout.php?lang=us&navp=0&navt=blank&content=glossaire&tools=2 >. Accessed 09 Mar 2006. • Genome Canada. 2006. Glossary. < http://www.genomecanada.ca/GCglossaire/glossaire/index.asp?alpha=h&l=e >. Accessed 07 Mar 2006. • Glatzel, M., and A. Aguzzi. 2001. The shifting biology of prions. Brain Res Brain Res Rev 36: 241.
Resources (Continued) • Glatzel, M., K. Stoeck, H. Seeger, T. Luhrs, and A. Aguzzi. 2005. Human prion diseases: Molecular and clinical aspects. Arch. Neurol. 62: 545-542. • Goldfarb, L.G., R.B. Petersen, M. Tabaton, P. Brown, A.C. Leblanc, P. Montagna, P. Cortelli, J. Julien, C. Vital, W.W. Pendelbury, M. Haltia, P.R. Willis, J.J. Hauw, P.E. McKiver, L. Monari, B. Schrank, G.D. Swergold, L. Autilio-Gambetti, C. Gajdusek, E. Lugaresi, and P. Gambetti. 1992. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: disease phenotype determined by a DNA polymorphism. Science 258: 806-808. • Hamilton, J.A., L.K. Steinrauf, J. Liepnieks, M.D. Benson, G. Holmgren, O. Sandgren, and L. Steen. 1992. Alteration in molecular structure which results in disease: the Met-30 variant of human plasma transthyretin. Biochimica et Biophysica Acta 1139: 9-16. • Harris, D.A., M.T. Huber, P. Van Dijken, S.L. Shyng, B.T. Chait, and R. Wang. 1993. Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochemistry 32: 1009-1016. • Helenius, A. 1994. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Molecular Biology of the Cell 5: 253-265. • Hope, J., L.J. Morton, C.F. Farquhar, G. Multhaup, K. Beyreuther, and R.H. Kimberley. 1986. The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP). The EMBO journal 5: 2591-7. • Huang, Z., J.M. Gabriel, M.A. Baldwin, R.J. Fletterick, S.B. Prusiner, and F.E. Cohen. 1994. Proposed three-dimensional structure for the cellular prion protein. Proc Natl Acad Sci U S A 91: 7139-43. • Kascsak, Z., R. Rubenstein, P.A. Merz, M. Tonna-DeMasi, R. Fersko, R.I. Carp, H.M. Wieniewski, and H. Diringer. 1987. Mouse polyclonal and monoclonal antibody to scrapie-associated fibril proteins. Journal of Virology 61: 3688. • Keh-Ming, P., M. Baldwin, J. Ngyen, M. Gasset, A. Serban, D. Groth, I. Mehlhorn, Z. Huang, R.J. Fletterick, F.E. Cohen, and S.B. Prusiner. 1993. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90: 10962-10966.
Resources (Continued) • Kimberlin, R.H., S.M. Hall, and C.A. Walker. 1983. Pathogenesis of mouse scrapie. Evidence for direct neural spread of infection to the CNS after injection of sciatic nerve. J Neurol Sci 61: 315. • Klein, M.A., R. Frigg, E. Flechsig, A.J. Raeber, U. Kalinke, H. Bluethmann, F. Bootz, M. Suter, R.M. Zinkernagel, and A. Aguzzi. 1997. A crucial role for B cells in neuroinvasive scrapie. Nature 390: 662-663. • Kornfeld, R., and S. Kornfeld. 1985. Assembly of asparagine-linked oligosaccharides. Annual review of biochemistry 54: 631-64. • Kretzschmar, H.A., L.E. Stowring, D. Westaway, W.H. Stubblebine, S.B. Prusiner, and S.J. Dearmond. 1986. Molecular cloning of a human prion protein cDNA. DNA 5: 315-324. • Lehman, S., and D.A. Harris. 1995.A mutant prion protein displays an aberrant membrane association when expressed in cultured cells. J Biol Chem 270: 24589-97; 1996. Mutant and infectious prion proteins display common biochemical properties in cultured cells. J Biol Chem 271: 1633-7. • Lippincott-Schwartz, J., L. Yuan, C. Tipper, M. Amherdt, L. Orci, and R.D. Klausner. 1991. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67: 601-616. • Locht, C., B. Chesebro, R. Race, and J.M. Keith. 1986. Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc Natl Acad Sci USA 83: 6372. • Malolepsza, E., M. Boniecki, A. Kolinski, and L. Piela. 2005. Theoretical model of prion propagation: a misfolded protein induces misfolding. Natl Acad Sci USA 102: 7835-7840. • Manetto, V., R. Medori, P. Cortelli, P. Montagna, P. Tinuper, A. Baruzzi, G. Rancurel, J.J. Hauw, J.J. Vanderhaeghen, and P. Mailleux. 1992. Fatal familial insomnia: clinical and pathologic study of five new cases. Neurology 42: 312-319. • Manson, J., D. Thompson, P. McBride, M.H. Kaufman, and J. Hope. 1992. The prion protein gene: A role in mouse embryogenesis? Development 115: 117-122. • Monari, L., S.C. Chen, P. Brown, P. Parchi, R.B. Petersen, J. Mikol, F. Gray, P. Cortelli, P. Montagna, B. Ghetti, L.G. Goldfarb, D.C. Gajdusek, E. Lugaresi, P. Gambetti, and L. Autilio-Gambetti. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: different prion proteins determined by a DNA polymorphism. Proc Natl Acad Sci USA 91: 2839-2842.
Resources (Continued) • Montana, P. 2005. Fatal familial insomnia: a model disease in sleep physiopathology. Sleep Medicine Reviews 9: 339-353. • Montagna, P., P. Cortelli, P. Avoni, G. Plazzi, R. Gallassi, F. Portaluppi, J. Julien, C. Vital, M.B. Delisle, P. Gambetti, and E. Lugaresi. 1998. Clinical features of fatal familial insomnia: phenotypic variability in relation to a polymorphism at codon 129 of the prion protein gene. Brain Pathol. 3: 515-520. • Mosby’s Medical Dictionary. 2002. Pp. 560, 869, 1619, .Mosby Inc., Saint Louis. • Neary, K., B. Caughey, D. Ernst, R.E. Race, and B. Chesebro. 1991. Protease sensitivity and nuclease resistance of the scrapie agent propagated in vitro in neuroblastoma cells. Journal of Virology 65: 1031-1034. • Nephrogenic Diabetes Insipidus Foundation (NDI). 2006. Immunoblots. < http://www.ndif.org/Terms/immunoblots.html >. Accessed 09 Mar 2006. • Nguyen, J., M.A. Baldwin, F.E. Cohen, and S.B. Prusiner. 1995. Prion protein peptides induce alpha-helix to beta-sheet conformational transitions. Biochemistry 34: 4186-1492. • Nicotera, P. 2001. A route for prion neuroinvasion. Neuron 31: 345-348. • Nurmi, M.H., M. Bishop, L. Strain, F. Brett, C. McGuigan, M. Hutchison, M. Farrel, R. Tilvis, S. Erkkila, O. Simell, R. Knight, and M. Haltia. 2003. The normal population distribution of PRNP codon 129 polymorphism. Acta Neurologica Scandinavica 108: 374-378. • Pan, K.M., N. Stahl, and S.B. Prusiner. 1992. Purification and properties of the cellular prion protein from Syrian hamster brain. Protein Science 1: 1343-1345. • Pan, K.M., M. Baldwin, J. Nguyen, M. Gasset, A. Serban, D. Groth, I. Mehlhorn, Z. Huang, R.J. Fletterick, F.E. Cohen, and S.B. Prusiner. 1993. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 90: 10962-10966. • Papassotiropoulos, A., M.A. Wollmer, A. Aguzzi, C. Hock, R.M. Nitsch, and D.J. De Quervain. 2005. The prion gene is associated with long term memory. Human Molecular Genetics 14: 2241-2246. • Parchi, P., R. Castellani, P. Cortelli, P. Montagna, S.G. Chen, R.B. Petersen, V. Manetto, C.L. Vnencak-Jones, M.J. McLean, J.R. Sheller, E. Lugaresi, L. Autilio-Gambetti, and p. Gambetti. 1995. Regional distribution of protease-resistant prion protein in fatal familial insomnia. Ann Neurol 38: 21-29.
Resources (continued) • Parchi, P., and P. Gambetti. 1995. Human prion diseases. Current Opinion in Neurology 8: 286. • Petersen, R.B., P. Parchi, S.L. Richardson, C.B. Urig, and P. Gambetti. 1996. Effect of the D178N mutation and the codon 129 polymorphism on the metabolism of the prion protein. The Journal of Biological Chemistry 271: 12661-12668. • Pocchiari, M., M. Puopolo, E.A. Croes, H. Budka, E. Gelpi, S. Collins, V. Lewis, T. Sutcliffe, A. Guilivi, N. Delesnerie-Paupretre, J.P. Brandel, A. Alperovitch, I. Zerr, S. Poser, HG.A. Kretzschmar, A. Ladogana, I. Rietvald, E. Mitrova, P. Martinez-Martin, J. de Pedro-Cuesta, M. Glatzel, A. Aguzzi, S. Cooper, J. Mackenzie, C.M. Van Duijn, and R.G. Will. 2004. predictors of survival in sporadic Creutzfeldt-Jacob disease and other human transmissible spongiform encephalopathies. Brain 127: 2357-2358. • Prusiner, S.B. 1991. Molecular biology of prion diseases. Science 252: 1515-1522; 1993. Genetic and infectious prion diseases. Arch. Neurol. 50: 1129-1153; 1995. The prion diseases. Scientific American 48-57; 1998. Prions. Proc. Natl. Acad. Sci. USA 95: 13363-83. • Prusiner, S.B., and S.J. DeArmond. 1994. Prion diseases and neurodegeneration. Annu Rev Neurosci 17: 311-339. • Robakis, N.K., P.R. Sawh, G.C. Wolfe, R. Rubenstein, R.I. Carp, and M.I. Innis. 1986. Isolation of a cDNA clone encoding the leader peptide of prion protein and expression of the homologous gene in various tissues. Proc Natl Acad Sci USA 83: 6377. • Safar, J., P.P. Roller, D.C. Gajdusek, and C.J. Gibbs Jr. 1993. Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. 1993. The Journal of Biological Chemistry 268: 20276-84. • Saladin, K.S. 2004. Glossary. Pp. G5 in Anatomy & physiology: the unit of form and function. McGraw Hill, New York. • Sampath, D., A. Varki, and H.H. Freeze. 1992. The spectrum of incomplete N-linked oligosaccharides synthesized by endothelial cells in the presence of brefeldin A. J Biol Chem 267: 4440. • Schuldiner, M.,S.R. Collins, N.J. Thompson, V. Denic, A. Bhamidipati, T. Punna, J. Ihmels, B. Andrews, C. Boone, J.F. Greenblatt, J.S. weissman, and N.J. Krogan. 2005.Illustration: Early secretory pathway. Cell 123: 507-519. • Scott, M.R., D.A. Butler, D.E. Bredesen, M. Walchli, K..K. Hsiao, and S.B. Prusiner. 1988.Prion protein gene expression in cultured cells. Protein Engineering 2: 69-76.
Resources (continued) • Sigma-Aldrich. 2006. Glycosylation: Functional and structural tools for glycobiology. < https://www.sigmaaldrich.com/Area_of_Interest/Life_Science/Proteomics_and_Protein_Expr_/Proteomics/Post_Translation_Modif_/Glycosylation.html >. Accessed 08 Mar 2006. • Stahl, N., M.A. Baldwin, D.B. Teplow, L. Hood, B.W. Gibson, A.L. Burlingame, and S.B. Prusiner. 1993. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32: 1991-2002. • Sundstrom, D.G., and H.M. Dreher. 2003. A deadly prion disease: fatal familial insomnia. J. Neurosci. Nurs. 35: 300-305. • Tabernero, C., J.M. Polo, M.D. Sevillano, R. Muñoz, J. Berciano, A. Cabello, B. Baez, J.R> Ricoy, R. Carpizo, J. Figols, N. Cuadrado, and L.E. Claveria. 2006. J. Neurol. Neurosurg. Psychiatry 68: 774-777. • Taraboulos, A., A.J. Raeber, D.R. Borchelt, D. Serban, and S.B. Prusiner. 1992. Synthesis and trafficking of prion proteins in cultured cells. Mol Biol Cell 3: 851. • United States Department of Agriculture (USDA). 2006. Glossary. < http://www.nal.usda.gov/bic/bio21/gloss.html > Accessed 06 Mar 2006. • Verugiriene, J., and A.K. Menon. 1994. The GPI anchor of cell-surface proteins is synthesized on the cytoplasmic face of the endoplasmic reticulum. The Journal of cell biology 127: 333. • Wechselberger, C., S. Wurm, W. Pfarr, and O. Hotglinger. 2002. The physiological functions of prion protein. Experimental Cell Research 281: 1-8. • Wikipedia. 2006. The thalamus picture. < http://en.wikipedia.org/wiki/Thalamus >. Accessed 10 Mar 2006. • Zaranz, J.J., B. Atarez, A.B. Martinez-Rodriguez, A. Arce, N. Carrera, I Fernandez-Manchola, M. Fernandez-Martinez, C. Fernandez-Maiztegui, I. Forcadas, L. Galdos, J.C. Gomez-Esteban, A. Ibañez, E. Lezcano, A. Lopez de Munain, J.F. Marti-Masso, M.M. Mendibe, M. Urtasun, J.M. Uterga, N. Saracibar, F. Velasco, M.M. Pancorbo. 2005. Phenotypic variability in familial prion diseases due to the D178N mutation. J Neurol Neurosurg Psychiatry 76: 1491-1496.