300 likes | 484 Views
Math ématiques de la diffusion restreinte dans des milieux poreux. Denis S. Grebenkov Laboratoire de Physique de la Matière Condensée CNRS – Ecole Polytechnique, Palaiseau, France. Séminaire du groupe « Milieux poreux » , 12 Janvier 2007, Paris, France. Outline of the talk.
E N D
Mathématiques de la diffusion restreinte dans des milieux poreux Denis S. Grebenkov Laboratoire de Physique de la Matière Condensée CNRS – Ecole Polytechnique, Palaiseau, France Séminaire du groupe « Milieux poreux », 12 Janvier 2007, Paris, France
Outline of the talk • Studying porous structures… • Basic principles of NMR diffusion imaging • Pulsed-gradient spin-echo (PGSE) experiments • General description via matrix formalisms • Different diffusion regimes • Conclusions and perspectives Grebenkov, Rev. Mod. Phys. (submitted)
Length scales: μm - mm Time scales: ms - s Studying porous structures… • Material sciences: rocks, sols, colloids, tissues, ... • Petrol search: sedimentary rocks • Medicine: brain, lung, bone, kidney, etc.
B0 B0 B0 B0 Two physical states Different populations m Local magnetization Schematic principle of NMR Nuclei of spin ½ (e.g., protons) Application of a magnetic field
Time-dependent linear magnetic field gradient Static magnetic field B0 z z y y x x Phase at time T Schematic principle of NMR
Local magnetization: Total transverse magnetization: Schematic principle of NMR is the projection of a 3D Brownian motion of a nucleus onto a given gradient direction
f(t) 1 T t -1 with the rephasing condition to cancel the imaginary part Example: free diffusion Isotropy of 3D Brownian motion can be seen as 1D Brownian motion is a Gaussian variable, therefore
Apparent diffusion coefficient Free diffusion: D is a measure of how fast the nuclei diffuse in space
Smaller ADC Smaller length scale Apparent diffusion coefficient Restricting geometry Effective « slow down » of the diffusive motion
Can one make a reliable diagnosis at earlier stage? Apparent diffusion coefficient Normal volunteer Healthy smoker Patient with severe emphysema van Beek et al. JMRI 20, 540 (2004)
f(t) 1 δ T t -1 Pulsed-gradient spin-echo (PGSE) Tanner & Stejskal, JCP 49, 1768 (1968)
Diffusion in a slab of width L: Coy and Callaghan, JCP 101, 4599 (1994). PGSE: diffusive diffraction For T long enough, one “measures’’ a form-factor
PGSE: pro & contro Pro • Direct access to the propagator • Easy experimental implementation • Characteristic length scales of the geometry via diffusive diffraction Contro • Assumption of very narrow pulses is not always valid, especially for gas diffusion • Material inhomogeneity may destroy diffraction peaks • Lost information about the motion between 0 and T.
echo time spatial profile gyromagnetic ratio temporal profile spin trajectory (Brownian motion) field intensity Averaging individual magnetizations: General description Total dephasing of a diffusing spin: Axelrod & Sen, JCP 114, 6878 (2001); Grebenkov, RMP (submitted)
Second moment For weak magnetic fields, one has
f(t) 1 T t -1 Slow diffusion regime (small p)
Slow diffusion regime (small p) Grebenkov, RMP (submitted)
Robertson, PR 151, 273 (1966) Fast diffusion regime (large p)
Example: cylinder Hayden et al. JMR 169, 313 (2004); Grebenkov, RMP (submitted)
Water proton NMR Hurlimann et al. JMR 113, 260 (1995) Stoller et al., PRA 44, 7459 (1991); de Swiet & Sen, JCP 100, 5597 (1994) Localization regime (large q)
Diagram of diffusion regimes Grebenkov, Rev. Mod. Phys. (submitted)
Slow diffusion regime (small p): S/V • Fast diffusion regime (large p): sensitivity to L • Localization regime: non-Gaussian behavior Summary A general theoretical description of restricted diffusion in inhomogeneous magnetic fields • Geometry and field inhomogeneity: • Temporal dependence : • Physical parameters:
Open problems and questions • Efficient numerical implementation, in particular, for model structures (sphere packs, fractals, …) • Computation of the high moments, transition to the localization regime • Inverse problem: what can one say about the geometry from experimental measurements? • Development and optimization of the temporal and spatial profiles to probe porous structures