220 likes | 379 Views
Robust Invisible Watermarking of Volume Data Using the 3D DCT. Yinghui Wu , Xin Guan,Mohan S.Kankanhalli,and Zhiyong Huang. Outline. The introduction of spread-spectrum The volume watermarking technique Watermark detection Test results. The introduction of spread-spectrum.
E N D
Robust Invisible Watermarking of Volume Data Using the 3D DCT Yinghui Wu , Xin Guan,Mohan S.Kankanhalli,and Zhiyong Huang
Outline • The introduction of spread-spectrum • The volume watermarking technique • Watermark detection • Test results
The introduction of spread-spectrum • Least significant bit • Direct sequence spread • Block spread spectrum • Duplication spreading
Least significant bit • Least significant bit embedding • 第一步:將影像資料轉換為8bit的二進位明文,舉例如果灰色圖素的值是90轉換結果值將為01011010。 • 第二步:選擇圖素的Least significant bit 插入watermark一個位元轉換成新的資料,舉例說明如果我們想要嵌入一個”1”在灰色值90的圖素裡我們將得到一個新的圖素資料91它的二進位是01011011。 當我們執行 L S B數位浮印技術我們可以得到的好處是非常的簡單快速而且容易製作,加入浮水印的位元設在圖片區塊位元的最低位元,是不易被人眼所觀察出來的。但是相對的它的缺點是容易被雜訊及幾何改變的破壞,容易被刪除,安全性不高。
Direct sequence spread • 步驟一:假設watermark的資料流是”1011001”,原始圖檔資料流是”00101001(41),01010100(84),00111010(58),10000111(135),00011111(31),10001000(136),00000000(0),11111111(255),10101111(175),…..” • 步驟二:將watermark的資料流”1011001”延展3次可得”111000111111000000111”。 • 步驟三:如果選擇 least significant bit 的方法去嵌入將可得到”00101010(42),01010101(85),00111011(59),10000111(135),00011111(31),10001001(136),00000001(1),11111111(255),10110000(176),…”。 • 步驟四:將嵌入的資料取出我們可得到”1,1,1,0,0,0,1,0,1…”。 • 步驟五:應用多數理論的原則來還原原始的watermark得到的是”1,0,1,1,0,0,1”。
Block spread spectrum • 如果利用least significant bit 將logo X嵌入在圖檔Y裡面,這個資料的容量等於圖檔圖素的總合,典型的區段展頻 least significant bit 資料嵌入的作法如下步驟 • 步驟一:假設logo X是I*J,圖像資料Y的容量是M*N,I,J << M,N(最好>32次)。步驟二:展開X的容量I*J變成二位元的資料流,得到I*J*8 位元資料 X’。 • 步驟三:將圖像資料Y分割成(M*N)/(I*J*8)個區塊,我們叫做Y’區塊陣列。 • 步驟四:每一個Y’的區塊陣列圖素的least significant bit 位置上嵌入X’資料,一次一個bit,順序是Y’[1,1],Y’[1,2]…Y’[k,n-k]。 • 以上的方法是利用區段展頻結合least significant bit,圖檔的容量剛好等於圖素的總合,在這裡,圖檔將被區分為多少個區塊呢?這個答案將根據不同的logo和不同的圖檔特性來決定。
Duplication spreading • 重複展頻的基礎只是應用反覆的嵌入處理,將logo展開的二位元資料流嵌入圖檔的每一個圖素裡,重複執行,直到圖檔的最後一個圖素。作法如下 • 步驟一:假設logo X的容量是I*J,圖檔Y的資料容量是M*N,在這裡 M,N >= I,J。 • 步驟二:展開logo X成為二位元的資料,得到結果是 I*J*8位元資料流 X’。步驟三:將X’嵌入圖檔Y順序是Y[1,1],Y[1,2]…Y[M,N],按照順序重複X’直到Y檔案結束為止。 • 應用重複展頻技術可提高資料還原及安全性,此方法僅較優於直接序列展頻。
The volume data watermarking technique • We utilize the spread-spectrum technique in the frequency domain in order to achieve this effect. • Assume that volume v that needs to be watermarked is of the size .
The volume watermarking technique (cont.) • A block-based 3D DCT transform is applied to the volume V. where f(x,y,z) corresponds to the voxel values,and F(u,v,w) corresponds to the 3D DCT coefficient.
The volume watermarking technique (cont.) • To embed the watermark information bits the bits are first spread by a large spread factor cr, called the chiprate. The spreading provides spatial redundancy by enbdeeing the information bits into cr number of voxels and K varies form 1 to cr.
The volume watermarking technique (cont.) • The spread bits are then modulated with a pseudo-random-noise(PN) sequence. This form the basic watermark sequence • The watermark sequence , forms a volume W of size .
The volume watermarking technique (cont.) • For every DCT block and the corresponding DCT block , the corresponding coefficients are added to form a watermarked block which constitute the watermarked volume in the frequency domain.
The volume watermarking technique (cont.) • The 3D inverse DCT is performed on to obtain a size volume V’.
Watermark detection • For detecting the existence of the watermark , the DCT-transformed original volume data watermarked volume data is subtracted from the DCT-transformed watermarked volume data to obtain the residual volume data DCT coefficients , i.e. • The 3D inverse DCT is performed on this residual data to obtain the residual watermark sequence
Watermark detection (cont.) • Considering one subset of the watermark values over the correlation window where where being the error term which can be due go intentional or unintentional attacks. • By choosing a large cr we have adequate redundancy and the summation can be approximated as : The required information bit :
Test results • In order to verify the robustness and invisible property of the algorithm proposed , we used a skull dataset (68*64*64) and a larger tomato data set(64*208*216) to conduct tests.
Test results (cont.) • The distortion caused by the attacks is measured in terms of SNR (Signal-to-Noise) and PSNR (Peak-Signal-to-Noise Ratio): where and the ith-voxel values of the original and watermarked volume data respective.
Test results (cont.) • First we conducted the cropping attacks. Experiment results of robustness on volume cropping is shown in table 1 for the skull dataset. watermark length=1840 bits and the chiprate cr=53
Test results (cont.) • We did the test of table 2 using a 2D image of “NUS” logo as the watermark.
Test results (cont.) • The Fig.3 shows the retrieved watermarks (2D images) under the various noise levels.
Test results (cont.) • For table 3 of the tomato dataset. Watermark length l=4000bits and the Chiprate cr=719.